Méthodes inspirées de la robotique pour l’aide à la conception de protéines
Auteur / Autrice : | Laurent Denarie |
Direction : | Thierry Siméon, Juan Cortés |
Type : | Thèse de doctorat |
Discipline(s) : | Intelligence Artificielle |
Date : | Soutenance le 12/04/2017 |
Etablissement(s) : | Toulouse, INPT |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, informatique et télécommunications (Toulouse) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'Analyse et d'Architecture des Systèmes (Toulouse ; 1968-....) |
Jury : | Président / Présidente : Rachid Alami |
Examinateurs / Examinatrices : Thierry Siméon, Juan Cortés, Stéphane Redon | |
Rapporteur / Rapporteuse : Marilena Venditelli, Charles Robert |
Mots clés
Résumé
La conception de protéines ayant des propriétés spécifiques représente un enjeu majeur pour la pharmacologie et les bio-technologies. Malgré les progrès des méthodes de CAO développées pour la conception de protéines, une limitation majeure des techniques existantes vient de la difficulté à prendre en compte la mobilité du squelette protéique, afin de mieux capturer l’ensemble des propriétés des protéines candidates et garantir la bonne stabilité de la protéine choisie dans la conformation voulue. De plus, si des méthodes de conception multi-états ont été proposées, elles ne permettent pas de garantir l’existence d’une trajectoire réaliste entre ces états. De ce fait, la conception de protéines devant permettre la transition entre plusieurs états reste un problème hors de la portée des méthodes actuelles. Cette thèse explore comment des algorithmes inspirés de la robotique peuvent être utilisés pour explorer l’espace conformationnel de manière efficace afin d’améliorer les méthodes de conception de protéines en prenant en compte de manière plus poussée la flexibilité de leur squelette. Ce travail pose également un premier jalon vers une méthode de conception adaptée à la réalisation d’un mouvement de la protéine.