Thèse soutenue

Reconnaissance de formes basée sur l'approche possibiliste dans les images mammographiques

FR  |  
EN
Auteur / Autrice : Marwa Hmida
Direction : Basel Solaiman
Type : Thèse de doctorat
Discipline(s) : Signal, Image, Vision
Date : Soutenance le 09/12/2017
Etablissement(s) : Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire
Ecole(s) doctorale(s) : École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes)
Partenaire(s) de recherche : Laboratoire : Département lmage et Traitement Information
Jury : Président / Présidente : Ali Khenchaf
Examinateurs / Examinatrices : Basel Solaiman, Jean-Paul Haton, Dorra Sellami-Masmoudi, Kamel Hamrouni, Imed Riadh Farah
Rapporteurs / Rapporteuses : Jean-Paul Haton, Dorra Sellami-Masmoudi

Résumé

FR  |  
EN

Face à l'augmentation significative du taux de mortalité par cancer du sein chez les femmes ainsi que la croissance continue du nombre de mammographies réalisées chaque année, le diagnostic assisté par ordinateur devient de plus en plus impératif pour les experts. Dans notre travail de thèse, une attention particulière est accordée aux masses mammaires vu qu'elles représentent le signe de cancer du sein le plus couramment observé en mammographies. Néanmoins, ces images présentent un très faible contraste, ce qui fait que les frontières entre les tissus sains et les masses sont mal définies. C'est ainsi qu'il est difficile de pouvoir discerner avec précision ces masses et de leur définir un contour unique. En outre, la complexité et la grande variabilité des formes des masses mammaires rendent les tâches de diagnostic et de classification difficiles. Dans ce cadre, nous proposons un système d'aide au diagnostic dont le but est la segmentation de masses dans les régions d'intérêt et par la suite la classification de ces masses en deux catégories : bénignes et malignes. La première étape de segmentation est une étape assez délicate vu que les étapes postérieures à savoir la caractérisation et la classification y sont dépendantes. En effet, une mauvaise segmentation peut entrainer une mauvaise prise de décision. Un tel cas peut survenir en raison de l'incertitude et l'imprécision émanant de l'image mammographique. C'est pour cette raison que nous proposons une définition de contours flous permettant de prendre en compte ces types d'imperfections. Ces contours flous sont introduits dans l'énergie d'un contour actif pour modifier son mouvement et aboutir à une délimitation exacte des masses. Une fois les régions d'intérêt sont segmentées, nous présentons une méthode de classification de masses basée sur la théorie des possibilités qui permet de modéliser les ambigüités inhérentes aux connaissances exprimées par l'expert. En outre, cette méthode utilise essentiellement les descripteurs de forme pour caractériser les masses et décider de leur degré de gravité vu que la forme des masses constitue un bon indicateur de gravité.La validation et l'évaluation de ces deux méthodes sont réalisées en utilisant les régions d'intérêt contenant des masses extraites de la base MIAS. Les résultats obtenus sont très intéressants et les comparaisons effectuées ont mis en évidence leurs performances.