Thèse soutenue

Vers un module photovoltaïque à concentration ultra-intégré : développement du concept et des moyens de caractérisations associés

FR  |  
EN
Auteur / Autrice : Clément Weick
Direction : Aurélie Tauzin
Type : Thèse de doctorat
Discipline(s) : Physique appliquée
Date : Soutenance le 23/11/2017
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale physique (Grenoble ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'innovation pour les technologies des énergies nouvelles et les nanomatériaux (Grenoble)
Jury : Président / Présidente : Anne Kaminski-Cachopo
Examinateurs / Examinatrices : Frank Dimroth, Maxime Darnon, Mathieu Baudrit, Pablo Garcia-Linares
Rapporteurs / Rapporteuses : Alain Dollet, Mustapha Lemiti

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Le travail de thèse effectué a pour objectif le développement d’un concept innovant de module photovoltaïque à faible concentration ultra-intégré, nommé HIRL pour Highly Integrated ReceiverLess module.Un premier Chapitre est consacré à la présentation du photovoltaïque à concentration (CPV) afin de positionner ce développement d’un concept original innovant. Le module développé est basé sur des concentrateurs réflectifs cylindro-paraboliques et il intègre des cellules multi-jonctions haut rendement. L’ambition est de travailler sur la simplification de la mise en module des cellules, en proposant d’une part, une architecture ultra-intégrée. L’optique de concentration en aluminium est multifonction puisqu’elle combine les fonctions de concentrateur, de support des cellules et de dissipateur thermique. D’autre part nous souhaitons appliquer pour ce concept des procédés de fabrication simples et éprouvés issus de l’industrie du photovoltaïque, tels que l’encapsulation par lamination. Enfin le module doit offrir une acceptance angulaire suffisante (> ±1°) pour utiliser un tracker un axe bas coût.Dans un second Chapitre, après avoir défini l’architecture de module envisagée, la modélisation thermique du système est présentée. Une étude a permis de définir les dimensions optimisées du concentrateur vis-à-vis de son rôle de dissipateur thermique. Ensuite, nous avons pu explorer les procédés de mise en forme des optiques mais également les méthodes d’interconnexion des cellules. Nous avons également mis en œuvre le procédé de lamination pour l’encapsulation des cellules multi-jonctions et démontrer la faisabilité de ce procédé pour le concept HIRL. Les procédés de fabrication identifiés ont été mis en œuvre pour la fabrication d’un prototype atteignant une efficacité électrique de 28%. La mesure de l’acceptance angulaire, de ±0.55°, a cependant montré les limites de ce premier design.Le troisième Chapitre est donc consacré à l’optimisation de l’architecture et des procédés au regard des résultats du Chapitre 2. Nous avons pu montrer comment modifier le design pour augmenter l’acceptance angulaire du module en conservant une bonne dissipation thermique. Enfin, de nouveaux procédés ont été mis en œuvre pour la réalisation d’un nouveau prototype fabriqué selon ce nouveau design et intégrant des cellules multi-jonctions optimisées pour la faible concentration. Ce nouveau prototype V3 présente un rendement de 30,5% et un angle d’acceptance de +/-1.4°.Dans le quatrième Chapitre, nous nous sommes attachés à caractériser les performances optiques des concentrateurs réalisés. Un banc de caractérisation optique a spécialement été développé pour ce type de module. Il a permis la comparaison des rendements optiques des différents concentrateurs, associés à leur procédé de mise en forme, ainsi que la comparaison de leur acceptance angulaire. Enfin, nous avons pu constater les effets de l’échauffement du concentrateur - du fait de son rôle de dissipateur thermique – sur les performances optiques.Enfin, dans un dernier Chapitre, une analyse de la chaine de pertes de la cellule au module est présentée. La caractérisation optiques du revêtement réflectif mais également des matériaux d’encapsulation des cellules ont été réalisés. En combinant ces résultats avec la mesure de réponse spectrale des cellules, nous avons pu calculer les performances optiques théoriques maximales atteignables par le module avec ces matériaux. Les moyens de caractérisations en simulateur solaire ont été adaptés afin de permettre la mesure de rendement de la cellule au module. Ces caractérisations ont permis de dresser un bilan de la distribution des pertes de puissance de la cellule au module. Ainsi, nous avons pu identifier les voies d’optimisation de ce module HIRL qui pourrait atteindre une efficacité électrique de 33%.