Thèse soutenue

Propriétés magnétiques du système Pt/Co/AlOx et ses variations sous champ électrique
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Marine Schott
Direction : Jan VogelClaire Baraduc
Type : Thèse de doctorat
Discipline(s) : Nanophysique
Date : Soutenance le 26/10/2017
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale physique (Grenoble ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Institut Néel (Grenoble) - Spintronique et technologie des composants (Grenoble)
Jury : Président / Présidente : Mairbek Chshiev
Examinateurs / Examinatrices : Nicolas Reyren, Alain Marty, Anne Bernand-Mantel, Hélène Béa
Rapporteurs / Rapporteuses : Véronique Dupuis, François Montaigne

Résumé

FR  |  
EN

Un des challenges actuels dans le domaine de la spintronique est son extension vers des systèmes dits de nanospintronique, où les dimensions sont réduites à l’échelle du nanomètre, avec comme système modèle un nano-aimant unique. La découverte de nouveaux moyens pour contrôler l’aimantation dans ces nano-aimants, pourrait avoir des applications pour les technologies de l’information. Dans le cadre de cette thèse nous nous sommes intéressés plus particulièrement aux nouveaux effets liés à l’accumulation de charges électriques au sein de films magnétiques ultraminces, aussi appelés effets de champ électrique. Nous avons étudié l’effet de l’application d’un champ électrique sur les différents paramètres magnétiques propres à nos films, via des mesures de magnéto-transport et magnéto-optique. Ces mesures ont été conduites sur une tri-couche de Pt/Co/AlOx présentant un gradient d’oxydation pour l’alumine. L’oxydation de cette interface étant contrôlée à l’échelle nanométrique, une large gamme de paramètres magnétiques est donc accessible au sein d’un seul et même échantillon. Ceci représente un très bon outil d’étude pour les différents phénomènes intervenant dans ces tri-couches. La caractérisation fine de ces échantillons a permis de mettre en évidence une zone pour laquelle des propriétés très intéressantes ont été observées (domaines spontanément désaimantés, bulles skyrmioniques). La proximité de la température de Curie (Tc) de cette zone avec la température de mesure (ambiante) en est la cause principale. Ces bulles skyrmioniques font actuellement l’objet de beaucoup de recherche au niveau national et international, étant considérées comme potentiellement très attractives pour des applications de type mémoire et logique magnétique. L’originalité de ce travail de thèse a été de montrer que ces bulles skyrmioniques sont fortement influencées par le champ électrique, dû au fort contrôle des propriétés magnétiques de cette zone (anisotropie, champ coercitif, aimantation à saturation, facteur DMI). Nous proposons le design d’un interrupteur nanométrique permettant de créer ou effacer ces bulles skyrmioniques grâce à un champ électrique, levant ainsi un verrou important pour la mémoire/logique magnétique basée sur ces bulles skyrmioniques. La potentialité de ces nouveaux effets pour réaliser un renversement ’aimantation/une création de bulles skyrmioniques, assistés par champ électrique, a été étudiée à des plages de températures et d’anisotropies adaptées pour ces applications (température ambiante).