Thèse soutenue

Approche intégrabiliste des modèles de physique statistique hors d'équilibre

FR  |  
EN
Auteur / Autrice : Matthieu Vanicat
Direction : Eric Ragoucy-AubezonNicolas Crampé
Type : Thèse de doctorat
Discipline(s) : Physique théorique
Date : Soutenance le 30/06/2017
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale physique (Grenoble ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Annecy-le-Vieux de Physique Théorique (Annecy-le-Vieux)
Jury : Président / Présidente : Bernard Derrida
Examinateurs / Examinatrices : Eric Bertin, Luigi Cantini, Luc Frappat, Véronique Terras
Rapporteurs / Rapporteuses : Vincent Pasquier, Jan De Gier

Résumé

FR  |  
EN

Malgré son indéniable succès pour décrire les systèmes physiques à l'équilibre thermodynamique (grâce à la distribution de Boltzmann, reflétant la maximisation de l'entropie, et permettant la construction systématique de potentiels thermodynamiques), la physique statistique n'offre pas de cadre général pour étudier les phénomènes hors d'équilibre, i.e dans lesquels on observe un courant moyen non nul d'une grandeur physique (énergie, charge, particules...).L'objectif de la thèse est de décrire de tels systèmes à l'aide de modèles très simples mais qui retranscrivent néanmoins les principales caractéristiques physiques de ceux-ci. Ces modèles sont constitués de particules se déplacant de manière aléatoire sur un réseau unidimensionnel connecté à des réservoirs et soumises à un principe d'exclusion. L'enjeu est de calculer exactement l'état stationnaire du modèle, notamment le courant de particules, ses fluctuations et plus particulièrement sa fonction de grande déviation (qui pourrait jouer le rôle d'un potentiel thermodynamique hors d'équilibre).Une première partie de la thèse vise à construire des modèles dits intégrables, dans lesquels il est possible de mener à bien des calculs exacts de quantités physiques. De nouveaux modèles hors d'équilibre sont proposés grâce à la résolution dans des cas particuliers de l'équation de Yang-Baxter et de l'équation de réflexion. De nouvelles structures algébriques permettant la construction de ces solutions par une procédure de Baxtérisation sont introduites.Une deuxième partie de la thèse consiste à calculer exactement l'état stationnaire de tels modèles en utilisant l'ansatz matriciel. Les liens entre cette technique et l'intégrabilité du modèle ont été mis en lumière au travers de deux relations clef: la relation de Zamolodchikov-Faddeev et la relation de Ghoshal-Zamolodchikov. L'intégrabilité a aussi été exploitée au travers des equations de Knizhnik-Zamolodchikov quantiques, afin de calculer les fluctuations du courant, mettant en lumière des connexions avec la théorie despolynômes symétriques (polynômes de Koornwinder en particulier).Enfin une dernière partie de la thèse porte sur la limite hydrodynamique des modèles étudiés, i.e lorsque la maille du réseau tend vers zero et que le nombre de constituants du système tend vers l'infini. Les résultats exacts obtenus sur les modèles à taille finie ont permis de vérifier les prédictions de la théorie des fluctuations macroscopiques (concernant les fluctuations du courant et du profil de densité dans l'état stationnaire) et de l'étendre à des modèles comprenant plusieurs espèces de particules.