Thèse soutenue

Fonction d'une protéine membranaire : étude structurale et dynamique par RMN

FR  |  
EN
Auteur / Autrice : Vilius Kurauskas
Direction : Beate Bersch
Type : Thèse de doctorat
Discipline(s) : Biologie Structurale et Nanobiologie
Date : Soutenance le 18/01/2017
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale chimie et science du vivant (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Institut de biologie structurale (Grenoble)
Jury : Président / Présidente : Eva Pebay-Peyroula
Examinateurs / Examinatrices : Stéphanie Ravaud, Martin Tollinger, Paul Schanda
Rapporteurs / Rapporteuses : Edmund Kunji, Alain Milon

Résumé

FR  |  
EN

L’utilisation de détergents est inévitable pour les études structurales des protéines membranaires. Dodecylphosphocholine (DPC) est un des détergents les plus utilisés pour ce type d’études employant la spectroscopie de résonance magnétique nucléaire (RMN) en solution. L’effet des détergents sur la structure et la dynamique des macromolécules est une problématique importante, mais peu étudiée à ce jour. Dans cette étude nous avons caractérisé la dynamique à l’échelle de la milliseconde, la liaison des substrats ainsi que des propriétés structurales de trois protéines membranaires différentes solubilisées dans des micelles de DPC. Ces protéines font partie de la famille des transporteurs mitochondriaux et nous avons choisi les séquences de la levure (ORC1, GGC1, AAC3). Nous avons détecté de la dynamique à l’échelle de la milliseconde qui est distribuée d’une manière asymétrique à travers la structure. En contradiction avec des propos de la littérature, nous montrons que cette dynamique n’est pas corrélée à la fonction, puisqu’elle n’est pas modifiée par des mutations qui inhibent le transport effectué par ces protéines quand elles sont reconstituées dans des liposomes. En plus, nous avons pu montrer que leur spécificité par rapport aux substrats, n’est pas conservée quand ces transporteurs sont reconstitués dans du DPC, mettant en question leur fonctionnalité dans ce détergent. La RMN a aussi permis de démontrer que les structures tertiaire et secondaire sont perturbées dans les micelles avec quelques hélices transmembranaires apparaissant exposées au solvant. Nous avons donc conclu que la présence du détergent a un effet fort sur les trois transporteurs mitochondriaux de notre étude et probablement d’autres protéines similaires, en les rendant très flexible. Nos résultats indiquent un probable effet général de ce détergent sur les protéines membranaires, comme nous le discutons dans une analyse détaillée de quelques études de protéines membranaires décrites dans la littérature. Dans la seconde partie de ce travail, nous avons adressé une question fondamentale de la dynamique des protéines: comment se comportent les protéines dans des cristaux ? Nous avons étudié la dynamique de l’ubiquitine cristalline à l’échelle de la milliseconde afin de comprendre l’influence de la maille cristalline sur ce type de mouvement. Pour ce faire, nous avons employé la RMN à l’état solide et des simulations de dynamique moléculaire de la protéine dans différents réseaux cristallins distincts. Il est intéressant à noter que dans ces cristaux on détecte toujours des processus locaux d’échange dynamique sur une échelle de temps de la milliseconde. Cependant, en comparant les résultats obtenus avec différentes formes cristallines, nous constatons que les paramètres thermodynamiques des différents états en échange et les vitesses d’interconversion entre ces dernières sont significativement modifiés par les contacts cristallins. De plus, nous avons détecté des mouvements globaux de type «rocking» des ces molécules à l’état cristallin qui surviennent également à l’échelle de la milliseconde. Ceci suggère que les mouvements globaux et locaux sont corrélés. Cette observation ouvre la discussion de l’importance de ce type de mouvements pour la qualité et l’interprétation des données des expériences de diffraction des rayons-X.