Thèse soutenue

Recalages non-linéaires pour la génération automatique de modèles biomécaniques patients-spécifiques à partir d'imagerie médicale

FR  |  
EN
Auteur / Autrice : Ahmad Bijar
Direction : Yohan PayanPascal Perrier
Type : Thèse de doctorat
Discipline(s) : Modèles, méthodes et algorithmes en biologie, santé et environnement
Date : Soutenance le 07/03/2017
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale ingénierie pour la santé, la cognition, l'environnement (Grenoble ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Techniques de l’ingénierie médicale et de la complexité - Informatique, mathématiques et applications (Grenoble, Isère, France)
Jury : Président / Présidente : Georges Bettega
Examinateurs / Examinatrices : Laurent Lamalle
Rapporteurs / Rapporteuses : Stéphane Cotin, Jean-Louis Dillenseger

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les techniques de chirurgie assistée par ordinateur suscitent depuis quelques années un vif intérêt, depuis l’aide au diagnostic jusqu’à l’intervention chirurgicale elle-même, en passant pas les prises de décision. Dans ce but, l’Analyse par Éléments Finis (AEF) du comportement de modèles biomécaniques tridimensionnels est une des méthodes numériques les plus utilisées et les plus efficaces. Cependant, la fiabilité des solutions de l’AEF dépend fortement de la qualité et de la finesse de la représentation des organes sous la forme de maillages d'éléments finis (MEF). Or la génération de tels maillages peut être extrêmement longue et exigeante en ressources computationnelles, car il est nécessaire de procéder à l’extraction précise de la géométrie de l’organe-cible à partir d’images médicales avant de recourir à des algorithmes sophistiqués de maillage. Confrontés à ces enjeux, certains travaux se sont attachés à éviter la procédure de maillage en exploitant des méthodes fondées pour chaque patient sur la déformation géométrique d’un maillage défini sur un sujet de référence, dit « Atlas ». Mais ces méthodes nécessitent toujours une description géométrique précise de l’organe-cible du patient, sous la forme de contours, de modèles surfaciques tridimensionnels ou d’un ensemble de points de référence. Dans ce contexte, le but de la thèse est de développer une méthodologie de conception automatique de maillages « patient-spécifiques », basée sur un Atlas, mais évitant cette étape de segmentation de la géométrie de l’organe-cible du patient. Dans une première partie de la thèse, nous proposons une méthode automatique qui, dans une première phase, procède au recalage volumétrique de l'image anatomique de l’Atlas sur celle du patient, afin d’extraire la transformation géométrique permettant de passer de l’Atlas au patient, puis, dans une seconde phase, déforme le maillage de l’Atlas et l’adapte au patient en lui appliquant cette transformation. Le processus de recalage est conçu de telle manière que la transformation géométrique préserve la régularité et la haute qualité du maillage. L’évaluation de notre méthode, à savoir l'exactitude du processus de recalage inter-sujets, s’est faite en deux étapes. Nous avons d’abord utilisé un ensemble d’images CT de la cage thoracique, en accès libre. Puis nous avons exploité des données IRM de la langue que nous avons recueillies pour deux sujets sains et deux patients souffrant de cancer de la langue, en condition pré- et post-opératoire.Dans une seconde partie, nous développons une nouvelle méthode, toujours basée sur un Atlas, qui exploite à la fois l'information fournie par les images anatomiques et celle relative à la disposition des fibres musculaires telles qu’elle est décrite par imagerie par résonance magnétique du tenseur de diffusion (RM-DT). Cette nouvelle démarche s’appuie ainsi, d’abord sur le recalage anatomique proposé dans notre première méthode, puis sur l’identification et le recalage d’un ensemble de faisceaux de fibres musculaires qui seront ensuite intégrés aux maillages « patient-spécifiques ». Contrairement aux techniques usuelles de recalage d’images RM-DT, qui impliquent pour chaque image la réorientation des tenseurs de diffusion soit au cours de l'estimation de la transformation géométrique, soit après celle-ci, notre technique ne nécessite pas cette réorientation et recale directement les faisceaux de fibres de l’Atlas sur ceux du patient. Notre démarche est très importante, car la détermination et l’identification précises de toutes les sous-structures musculaires nécessiteraient une intervention manuelle pour analyser des milliers, voire des millions, de fibres, qui sont grandement influencées par les limitations et aux distorsions inhérentes aux images RM-DT et aux techniques de tractographie des fibres. L’efficacité de notre méthodologie est démontrée par son évaluation sur un ensemble d’images IRM et RM-DT de la langue d’un sujet.