Thèse soutenue

Distribution asymptotique fine des points de hauteur bornée sur les variétés algébriques

FR  |  
EN
Auteur / Autrice : Zhizhong Huang
Direction : Emmanuel Peyre
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 30/08/2017
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Institut Fourier (Grenoble)
Jury : Président / Présidente : Régis Du Moulin de la Bretèche
Examinateurs / Examinatrices : Sara Checcoli
Rapporteur / Rapporteuse : David MacKinnon, Marc Hindry

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

L'étude de la distribution des points rationnels sur les variétés algébriques est un sujet classique de la géométrie diophantienne. Le programme proposé par V. Batyrev et Y. Manin dans des années 90 donne une prédiction sur l'ordre de croissance tandis que sa version ultérieure dûe à E. Peyre conjecture l'existence d'une distribution globale. Dans cette thèse nous nous proposons une étude de la distribution locale des points rationnels de hauteur bornée sur les variétés algébriques. Ceci envisage une description plus fine que celle globale en dénombrant les points le plus proche d'un point fixé. Nous nous plaçons sur le cadre récent du travail de D. McKinnon et M. Roth qui met en évidence que la géométrie de la variété gouverne l'approximation diophantienne sur elle et nous reprenons les résultats de S. Pagelot. L'ordre de croissance espéré et l'existence d'une mesure asymptotique sur certaines surfaces toriques sont démontrés, alors que démontrons-nous un résultat totalement différent pour une autre surface sur laquelle il n'y pas de mesure asymptotique et les meilleurs approximants génériques s'obtiennent sur des courbes rationnelles nodales. Ces deux phénomènes sont de nature radicalement différente au point de vu de l'approximation diophantienne.