Thèse soutenue

Sur les aspects théoriques et pratiques des compromis dans les problèmes d'allocation des ressources

FR  |  
EN
Auteur / Autrice : Abhinav Srivastav
Direction : Oded MalerDenis Trystram
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 16/02/2017
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Verimag (Grenoble)
Jury : Président / Présidente : Marie-Christine Rousset
Examinateurs / Examinatrices : Seffi Naor, Daniel Vanderpooten, Lothar Thiele
Rapporteur / Rapporteuse : Adi Rosén, Monaldo Mastrolilli

Résumé

FR  |  
EN

Le contenu de cette thèse est divisé en deux parties. La première partie de cette thèse porte sur l'étude d'approches heuristiques pour approximer des fronts de Pareto. Nous proposons un nouvel algorithme de recherche locale pour résoudre des problèmes d'optimisation combinatoire. Cette technique est intégrée dans un modèle opérationnel générique où l'algorithme évolue vers de nouvelles solutions formées en combinant des solutions trouvées dans les étapes précédentes. Cette méthode améliore les algorithmes de recherche locale existants pour résoudre le problème d'assignation quadratique bi- et tri-objectifs.La seconde partie se focalise sur les algorithmes d'ordonnancement dans un contexte non-préemptif. Plus précisément, nous étudions le problème de la minimisation du stretch maximum sur une seule machine pour une exécution online. Nous présentons des résultats positifs et négatifs, puis nous donnons une solution optimale semi-online. Nous étudions ensuite le problème de minimisation du stretch sur une seule machinedans le modèle récent de la réjection. Nous montrons qu'il existe un rapport d'approximation en O(1) pour minimiser le stretch moyen. Nous montrons également qu'il existe un résultat identique pour la minimisation du flot moyen sur une machine. Enfin, nous étudions le problème de la minimisation du somme des flots pondérés dans un contexte online.