Thèse soutenue

Application de la méthode des éléments discrets aux déformations finies inélastiques dans les multi-matériaux
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Robin Gibaud
Direction : Luc Salvo
Type : Thèse de doctorat
Discipline(s) : Matériaux, Mécanique, Génie civil, Electrochimie
Date : Soutenance le 28/11/2017
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Ingénierie - matériaux mécanique énergétique environnement procédés production (Grenoble ; 2008-....)
Partenaire(s) de recherche : Laboratoire : Science et ingénierie des matériaux et procédés (Grenoble)
Jury : Président / Présidente : Dominique Poquillon
Examinateurs / Examinatrices : Bruno Chareyre, Pierre Lhuissier
Rapporteurs / Rapporteuses : Samuel Forest, André Katterfeld

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Le formage de matériaux multiphasés comprend des mécanismes complexes en lien avec la rhéologie,la morphologie et la topologie des phases.Du point de vue numérique,la modélisation de ces phénomènes en résolvant les équations aux dérivées partielles (EDP) décrivant le comportement continu des phases n'est pas trivial.En effet,de nombreuses discontinuités associées aux phases se déplacent et peuvent interagir.Ces phénomènes peuvent être conceptuellement déclicats à intégrer au modèlecontinu et coûteux en termes de calcul.Dans cette thèse,la méthode des éléments discrets (DEM) est utilisée pour modéliser phénoménologiquement les déformations finies inélastiques dans les multi-matériaux.Les lois d'interactions attractive-répulsive sont imposées à des particules fictives,dont les ré-arrangements collectifs modélisent les déformations irréversibles de milieux continus.Le comportement numérique des empilements de particules est choisi pourreproduire des traits caractéristiques de la viscoplasticité parfaite etisochore:contrainte d'écoulement,sensibilité à la vitesse de déformation,conservation du volume.Les résultats d'essais de compression de bi-matériaux simples,simulés avec la DEM,sont comparés à la méthode des éléments finis (FEM) et sont en bon accord.Le modèle est entendu pour pouvoir supporter des sollicitations de traction.Une méthode de détection de contacts et d'auto-contacts d'objets physiques estproposée,basée sur l'approximation locale des surfaces libres.Les capacités de la méthodologie globale sont testées sur des mésostructurescomplexes,obtenues par tomographie aux rayons X.La compression à chaud d'un composite métallique dense est modélisée.La co-déformation peut être observées à l'échelle spatiale des phases.Deux cas de matériaux ``poreux'' sont considérés.Premièrement la simulation de la compression puis traction d'alliagesd'aluminium présentant des pores.Ces pores proviennent du coulage du matériau,leur fermeture et ré-ouverture mécanique est modélisée,y compris la coalescence à grande déformation.Deuxièmement la simulation de la compression de mousse métallique de faibledensité.Typiquement utilisée dans le but d'absorber de l'énergie mécanique,la compression jusqu'à densification provoque de nombreuses interactions entreles bras de matière.