Thèse soutenue

Contributions au vol en formation serrée de petits drones
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Jan Bolting
Direction : Jean-Marc BiannicFrançois Defaÿ
Type : Thèse de doctorat
Discipline(s) : Automatique
Date : Soutenance le 26/09/2017
Etablissement(s) : Toulouse, ISAE
Ecole(s) doctorale(s) : École doctorale Systèmes (Toulouse ; 1999-....)
Partenaire(s) de recherche : Laboratoire : Institut supérieur de l'aéronautique et de l'espace (Toulouse, Haute-Garonne). Département conception et conduite des véhicules aéronautiques et spatiaux
Equipe de recherche : Equipe d'accueil doctoral Commande des systèmes et dynamique du vol (Toulouse, Haute-Garonne)
Jury : Président / Présidente : Isabelle Queinnec
Examinateurs / Examinatrices : Christophe Cros
Rapporteurs / Rapporteuses : Peter Hecker, Marc Jungers

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Les mini-drones à propulsion électrique sont susceptibles d’avoir une endurance inférieure à celle de drones plus grands.L’exploitation des interactions aérodynamiques, inspirée par les oiseaux migratoires, ainsi que le ravitaillement en vol , sont des approches prometteuses pour améliorer l’endurance des mini-drones. La commande par modes glissants d’ordre supérieur en temps continu (CTHOSM) a été considérée comme un candidat prometteur à ce problème ouvert difficile et a été appliquée avec succès à des modèles cinématiques simples. Dans nos travaux, nous étudions les implications de la présence de la dynamique de la boucle interne et de l’implémentation en temps discret à des taux d’échantillonnage modérés et constatons alors que l’application de la commande CTHOSM devient impossible. Nous proposons donc un schéma de guidage prédictif discret par modes glissants pour approximer les performances de la commande CTHOSM pour une dynamique réaliste du drone. On propose également un problème de référence accessible pour d'autres chercheurs. Les algorithmes de localisation probabilistes existants ne permettent pas la caractérisation de régions de confiance garanties de la position des autres membres de la formation. Dans ce contexte, nous proposons un nouveau filtre ensembliste caractérisant de telles régions de confiance sous forme ellipsoïdale. Nos premières évaluations ont montré que les efforts de calcul induits par cette mise en œuvre restent parfaitement compatibles avec les contraintes des systèmes avioniques des petits drones.