Analyse asymptotique de processus ponctuels
Auteur / Autrice : | Aurélien Vasseur |
Direction : | Laurent Decreusefond, Frédéric Chazal |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique et réseaux |
Date : | Soutenance le 01/12/2017 |
Etablissement(s) : | Paris, ENST |
Ecole(s) doctorale(s) : | École doctorale Informatique, télécommunications et électronique de Paris (1992-...) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Traitement et communication de l'information (Paris ; 2003-....) |
Jury : | Président / Présidente : Laure Coutin |
Examinateurs / Examinatrices : Hermine Biermé, Pierre Calka | |
Rapporteur / Rapporteuse : Jean-Christophe Breton, Nicolas Privault |
Mots clés
Mots clés contrôlés
Résumé
La méthode de Stein constitue une des principales techniques pour la résolution de certains problèmes d’approximation en théorie des probabilités. Dans ce manuscrit, nous l’appliquons au contexte des processus ponctuels. La première partie de ces investigations se concentre sur le processus ponctuel de Poisson. Sa propriété caractéristique d’indépendance fournit le moyen d’expliquer intuitivement pourquoi une suite de processus ponctuels de moins en moins répulsive peut converger vers un tel processus ponctuel. Ceci nous amène plus généralement à démontrer des résultats de convergence pour des suites de processus ponctuels construites à partir d’opérations telles que la superposition, l’amincissement ou l’homothétie. L’utilisation d’une distance sur les processus ponctuels, appelée distance de Kantorovich-Rubinstein, permet en outre l’obtention de taux de convergence. La seconde partie est centrée sur une classe de processus ponctuels avec beaucoup d’attractivité, appelés processus ponctuels α-stables. Leur structure basée sur un processus ponctuel de Poisson nous permet d’élargir à ces processus la méthode utilisée précédemment et de proposer de nouveaux résultats, via certaines propriétés que nous établissons sur ces processus ponctuels.