Algorithmes parallèles pour le traitement rapide de géométries 3D
Auteur / Autrice : | Hélène Legrand |
Direction : | Tamy Boubekeur |
Type : | Thèse de doctorat |
Discipline(s) : | Signal et images |
Date : | Soutenance le 27/10/2017 |
Etablissement(s) : | Paris, ENST |
Ecole(s) doctorale(s) : | École doctorale Informatique, télécommunications et électronique de Paris (1992-...) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Traitement et communication de l'information (Paris ; 2003-....) |
Jury : | Président / Présidente : François Goulette |
Examinateurs / Examinatrices : Michel Roux, Pooran Memari | |
Rapporteur / Rapporteuse : Gilles Gesquière, Franck Hétroy |
Mots clés
Résumé
Au cours des vingt dernières années, les principaux concepts du traitement du signal ont trouvé leur homologue pour le cas de la géométrie numérique, et en particulier des modèles polygonaux de surfaces 3D. Ces traitements requièrent néanmoins un temps de calcul non négligeable lorsqu’on les applique sur des modèles de taille conséquente. Cette charge de calcul devient un frein important dans le contexte actuel, où les quantités massives de données 3D générées à chaque seconde peuvent potentiellement nécessiter l’application d’un sous-ensemble de ces opérateurs. La capacité à exécuter des opérateurs de traitement géométrique en un temps très court représente alors un verrou important pour les systèmes de conception, capture et restitution 3D dynamiques. Dans ce contexte, on cherche à accélérer de plusieurs ordres de grandeur certains algorithmes de traitement géométrique actuels, et à reformuler ou approcher ces algorithmes afin de diminuer leur complexité ou de les adapter à un environnement parallèle. Dans cette thèse, nous nous appuyons sur un objet compact et efficace permettant d’analyser les surfaces 3D à plusieurs échelles : les quadriques d’erreurs. En particulier, nous proposons de nouveaux algorithmes haute performance, maintenant à la surface des quadriques d’erreur représentatives de la géométrie. Un des principaux défis tient ici à la génération des structures adaptées en parallèle, afin d’exploiter les processeurs parallèles à grain fin que sont les GPU, la principale source de puissance disponible dans un ordinateur moderne.