Thèse soutenue

Magnetoelectric manipulation of transverse domain walls in magnetoelastic nanostructures

FR  |  
EN
Auteur / Autrice : Théo Mathurin
Direction : Philippe PernodNicolas Tiercelin
Type : Thèse de doctorat
Discipline(s) : Micro et nano technologies, acoustique et télécommunications
Date : Soutenance le 14/11/2017
Etablissement(s) : Ecole centrale de Lille
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Institut d'Electronique, de Microélectronique et de Nanotechnologie - Institut d'électronique, de microélectronique et de nanotechnologie
Jury : Président / Présidente : Philippe Lecoeur
Examinateurs / Examinatrices : Philippe Lecoeur, Yannick Dusch, Stefano Giordano, Anne Bernand-Mantel, Michel Hehn, Vladimir Preobrazhensky
Rapporteur / Rapporteuse : Ursula Ebels, André Thiaville

Résumé

FR  |  
EN

La manipulation de parois de domaine magnétique – qui séparent des régions d’aimantation uniforme dans les matériaux – est associée à des enjeux à la fois fondamentaux et technologiques. De nombreux travaux portent sur l’utilisation de champs magnétiques et de courants électriques pour leur déplacement. Cependant, des préoccupations particulières – notamment la dissipation d’énergie - motivent la recherche d’alternatives. Parmi les solutions potentielles, le couplage magnétoélectrique par l’intermédiaire de contraintes mécaniques dans des hétérostructures magnétoélastique/piézoélectrique paraît prometteur. Dans cette thèse, il est montré que l’association d’un champ magnétique de biais et de contraintes mécaniques uniformes peut engendrer le déplacement unidirectionnel d’une paroi de domaine transverse dans des nanostructures à anisotropie uniaxiale. Les considérations statiques et dynamiques de ce phénomène sont étudiées par le biais de procédures numériques ad hoc simulant le couplage mécanique entre substrat de PMN-PT de coupe 011 générant des contraintes, et nanostructures multicouches magnétoélastiques TbCo2/FeCo. Le design du profil de section des nanostructures permet de moduler la réponse du système, par exemple pour contrôler la position de parois confinées. La dynamique du système se distingue des régimes habituels de par la forme de la paroi de domaine. L’atteinte de régimes permanents dans des nanorubans montre que des vitesses comparables aux autres techniques sont obtenues, pour une dissipation d’énergie beaucoup plus faible. Des travaux expérimentaux ont permis de mettre au point un process de fabrication sur PMN-PT et d’explorer l’effet magnétoélectrique