Thèse soutenue

Caractérisation des propriétés nanomécaniques des membranes lipidiques biologiques avec microscopie à force atomique mode circulaire

FR  |  
EN
Auteur / Autrice : Risa Nurin Baiti
Direction : Karim El Kirat-ChatelPierre-Emmanuel Mazeran
Type : Thèse de doctorat
Discipline(s) : Biomécanique : Unité de Recherche Biomécanique et Bio-ingénierie (UMR-7338)
Date : Soutenance le 28/11/2017
Etablissement(s) : Compiègne
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Compiègne)
Partenaire(s) de recherche : Laboratoire : Biomécanique et Bioingéniérie

Résumé

FR  |  
EN

Les membranes cellulaires sont impliquées dans de nombreux processus cellulaires : la diffusion des médicaments et des ions, la transduction des signaux, la génération d'énergie, le développement cellulaire (fusion et fission). Les bicouches phospholipides sont les principaux composants des membranes cellulaires, elles constituent une barrière dynamique protégeant les réactions biochimiques cellulaires. La détermination des propriétés biochimiques et mécaniques des bicouches lipidiques et leur évolution avec les conditions environnementales est nécessaire pour étudier la nature des processus cellulaires et l'influence des agents externes (résistance mécanique, perméabilité et réponse biologique). Pour mener de telles caractérisations, des modèles simplifiés de membrane biomimétique, tels que des bicouches lipidiques supportées (SLB), ont été développés. Parmi les techniques de caractérisation disponibles, la microscopie à force atomique (AFM) a été largement utilisée pour étudier l'organisation nanométrique des SLB dans des conditions physiologiques. AFM peut produire des images à la haute résolution et peut également être utilisé pour quantifier la résistance mécanique des SLB au moyen d'expériences de perforation. Pendant 30 ans, AFM a traversé de nombreux développements. Très récemment, le Mode circulaire AFM (CM-AFM) a été développé à l'Université de Technologie de Compiègne. CM-AFM est capable de générer un mouvement de glissement de la pointe AFM sur l'échantillon à une vitesse élevée, constante et continue et de mesurer les forces de frottement latéral rapidement et exactement simultanément avec les forces verticales. Pour la première fois, le CM-AFM sert à caractériser les échantillons biologiques dans des conditions physiologiques, ce qui permet de mesurer simultanément les forces de poinçonnage et de frottement en fonction de la vitesse de glissement. Il offre pour la première fois la capacité de décrire le comportement de friction des SLB en complément de la force de perforation. En raison du besoin important de mesure quantitative, l'optimisation du protocole CM-AFM a été effectuée en premier. Le protocole d'étalonnage du scanner a été établi avec succès pour assurer la précision de la vitesse de glissement. En outre, le protocole d'étalonnage des pointes, basé sur la méthode de Wedge et un échantillon rayé, est également conçu pour déterminer la constante d'étalonnage de la force latérale. Nous avons utilisé CM-AFM pour mesurer les propriétés tribologiques des échantillons solides pour améliorer l'équipement sous milieu liquide. Ensuite, les propriétés mécaniques (forces de poinçonnage et de frottement) des SLB ont été mesurées en fonction de la vitesse de glissement. Les SLB purs et mixtes ont été préparés par la méthode de fusion des vésicules. Différents médias ont également été utilisés pour étudier l'effet des cations monovalents sur les propriétés mécaniques des SLB. Dans tous les cas, la force de frottement augmente linéairement avec la vitesse de glissement, ce qui nous permet de déduire le coefficient visqueux de frottement. Comme prévu, la force de poinçonnage et le coefficient visqueux de frottement sont influencés par la composition des mélanges de lipides, par la nature des cations en milieu liquide et par la longueur des chaînes hydrocarbonées mais pas de manière similaire. L'interprétation de l'évolution du coefficient de force de frottement visqueux avec le système étudié est particulièrement délicate car la force de frottement pourrait être influencée par les propriétés d'interface ou de volume. Cette problématique sera le défi pour les prochaines études. Néanmoins, nos résultats illustrent la puissance de la technique CM-AFM et ouvre de nombreuses possibilités pour caractériser d'autres échantillons biologiques (cellules et tissus) afin de mieux comprendre les mécanismes élémentaires de friction.