Thèse soutenue

Étude de la contribution des échanges thermiques radiatifs aux processus de propagation des flammes de poussières : application aux explosions de poussières d’aluminium
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Rim Ben Moussa
Direction : Christophe ProustMohamed GuessasmaKhashayar Saleh
Type : Thèse de doctorat
Discipline(s) : Génie des Procédés Industriels et développement durable : Transformations intégrées de la matière renouvelable (EA-4297)
Date : Soutenance le 20/12/2017
Etablissement(s) : Compiègne
Ecole(s) doctorale(s) : École doctorale 71, Sciences pour l'ingénieur (Compiègne)

Résumé

FR  |  
EN

Ces travaux de thèse sont consacrés à l’examen du rôle du rayonnement thermique dans le processus de propagation des flammes issues de la combustion des particules d’aluminium dans l’air. Le sujet étant complexe et d’un intérêt industriel, il nécessite de prendre en compte le couplage de nombreux phénomènes physico-chimiques afin de prédire finement les conséquences des explosions de poussières. Une analyse bibliographique approfondie est proposée, concernant les mécanismes d’inflammation et de combustion des particules d’aluminium et aussi concernant les connaissances relatives à la propagation des flammes de poussières. La question spécifique de la nature des échanges thermiques et de l’influence du rayonnement thermique est étudiée. La revue bibliographique souligne les approximations et les hypothèses simplificatrices utilisées dans la littérature permettant donc de définir les pistes d’améliorations. Compte tenu des limitations importantes concernant la physique de ces flammes, un outil de simulation de physique numérique nommé « RADIAN », proche de la simulation numérique directe, a été développé proposant un couplage fin entre les différents modes d’échanges thermiques et la combustion pour modéliser la propagation de la flamme dans un nuage de poussières. La méthode des éléments discrets (MED) est utilisée pour modéliser numériquement les échanges radiatifs entre les particules et les échanges conductifs entre gaz et particules. La méthode des différences finies est utilisée pour modéliser numériquement la conduction thermique dans la phase gazeuse et la combustion. Un modèle radiatif est proposé se basant sur la théorie de Mie sur les interactions rayonnement-particules. Les résultats des simulations sont comparés avec des solutions analytiques et des données expérimentales de la littérature. Mais en plus, une étude expérimentale est aussi conduite afin de mesurer la distribution du flux radiatif devant la flamme et la vitesse de combustion laminaire pour des flammes Méthane-Sic, Méthane-Alumine et Al-air. Un bon accord entre les simulations et les expériences est démontré. La loi de Beer-Lambert relative au transfert radiatif devant le front de flamme s’avère inapplicable et une nouvelle solution analytique est proposée. La présence de particules absorbantes du rayonnement promeut la propagation de la flamme. En particulier, il a été montré expérimentalement et confirmé numériquement que les mélanges riches d’AL-air sont susceptibles d’accélérer rapidement.