Thèse soutenue

Utilisation de modèles semi-empiriques pour prédire les relations luminescence-structure dans les luminophores excités aux UV proches activés avec de l'europium divalent ou des cations de type mercure

FR  |  
EN
Auteur / Autrice : Mariam Amer
Direction : Philippe Boutinaud
Type : Thèse de doctorat
Discipline(s) : Chimie, Sciences des Matériaux
Date : Soutenance le 13/12/2017
Etablissement(s) : Université Clermont Auvergne‎ (2017-2020)
Ecole(s) doctorale(s) : École doctorale des sciences fondamentales (Clermont-Ferrand)
Partenaire(s) de recherche : Laboratoire : Institut de Chimie de Clermont-Ferrand (Aubière, Puy-de-Dôme ; 2012-....)
Jury : Président / Présidente : Geneviève Chadeyron
Examinateurs / Examinatrices : Bruno Viana, Alain Braud, Audrey Potdevin-Caumond, Véronique. Jubera
Rapporteurs / Rapporteuses : Bruno Viana, Alain Braud

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

La stratégie la plus utilisée aujourd'hui pour la conception de nouveaux matériaux luminescents est basée sur des méthodes d'essais-erreurs. Cependant, ces méthodes peuvent souvent entraîner une consommation d'argent et de temps. En ce sens, un modèle théorique agissant comme un outil prédictif peut servir comme une stratégie alternative. De tels modèles sont également étudiés et utilisés par des scientifiques du monde entier, mais ils sont pour la plupart difficiles à utiliser. Dans ce travail, deux modèles semi-empiriques conviviaux et faciles à utiliser ont été proposés pour la conception de luminophores intégrés dans le développement de technologies importantes, en particulier dans les éclairages à base de LED et les cellules solaires. Ces modèles sont: 1) le modèle de facteur environnemental (EF) basé sur la théorie diélectrique de la liaison chimique proposée par Philips et 2) le modèle de transfert de charge métal-métal (MMCT) utilisées pour trouver des relations entre les propriétés structurelles d'un matériau et sa luminescence. Le modèle EF a été appliqué à la famille des composés AIBIIPO4 (AI = cation monovalent, BII = cation divalent) dopés à Eu2+. Il était capable d'estimer l'énergie du bord d'excitation et d'identifier les sites de dopage à ± 1000 cm-1. Il peut donc être utilisé pour la conception de nouveaux luminophores appartenant à cette famille. Dans la deuxième partie, les deux modèles ont été utilisés pour identifier la nature de la luminescence dans les oxydes dopés à Bi3+. A cet effet, une méthode combinant les modèles motionnés avec les valeurs de Stokes shift a été trouvé fiable. En outre, la a été jugée utile pour expliquer la modification des propriétés luminescentes de YVO4:Bi3+ sous haute pression. Dans la troisième partie, les deux modèles ont été utilisés pour explorer la luminescence des oxydes dopés à Sb3+ par analogie avec Bi3+. Cependant, les résultats n'étaient pas assez bons pour identifier la nature de la luminescence dans ces matériaux. La raison pourrait être liée à la position décentrée du dopant (Sb3+).