Thèse soutenue

Propagation d'incertitudes en CEM. Application à l'analyse de fiabilité et de sensibilité de lignes de transmission et d'antennes

FR  |  
EN
Auteur / Autrice : Attibaud Kouassi
Direction : Pierre BonnetMichel Fogli
Type : Thèse de doctorat
Discipline(s) : Electromagnétisme
Date : Soutenance le 18/12/2017
Etablissement(s) : Université Clermont Auvergne‎ (2017-2020)
Ecole(s) doctorale(s) : École doctorale des sciences pour l'ingénieur (Clermont-Ferrand)
Partenaire(s) de recherche : Laboratoire : Institut Pascal (Aubière, Puy-de-Dôme)
Jury : Président / Présidente : Geneviève Duchamp
Examinateurs / Examinatrices : Alain Reineix, Flavio Canavero, Élodie Richalot, Sébastien Lalléchère, Jean-Marc Bourinet
Rapporteur / Rapporteuse : Alain Reineix, Flavio Canavero

Résumé

FR  |  
EN

De nos jours, la plupart des analyses CEM d’équipements et systèmes électroniques sont basées sur des approches quasi-déterministes dans lesquelles les paramètres internes et externes des modèles sont supposés parfaitement connus et où les incertitudes les affectant sont prises en compte sur les réponses par le biais de marges de sécurité importantes. Or, l’inconvénient de telles approches est qu’elles sont non seulement trop conservatives, mais en outre totalement inadaptées à certaines situations, notamment lorsque l’objectif de l’étude impose de prendre en compte le caractère aléatoire de ces paramètres via des modélisations stochastiques appropriées de type variables, processus ou champs aléatoires. Cette approche probabiliste a fait l’objet ces dernières années d’un certain nombre de recherches en CEM, tant au plan national qu’au plan international. Le travail présenté dans cette thèse est une contribution à ces recherches et a un double objectif : (1) développer et mettre en œuvre une méthodologie probabiliste et ses outils numériques d’accompagnement pour l’évaluation de la fiabilité et l’analyse sensibilité des équipements et systèmes électroniques en se limitant à des modélisations stochastiques par variables aléatoires ; (2) étendre cette étude au cas des modélisations stochastiques par processus et champs aléatoires dans le cadre d’une analyse prospective basée sur la résolution de l’équation aux dérivées partielles des télégraphistes à coefficients aléatoires.L’approche probabiliste mentionnée au point (1) consiste à évaluer la probabilité de défaillance d’un équipement ou d’un système électronique vis-à-vis d’un critère de défaillance donné et à déterminer l’importance relative de chacun des paramètres aléatoires en présence. Les différentes méthodes retenues à cette fin sont des adaptations à la CEM de méthodes développées dans le domaine de la mécanique aléatoire pour les études de propagation d’incertitudes. Pour le calcul des probabilités de défaillance, deux grandes catégories de méthodes sont proposées : celles basées sur une approximation de la fonction d’état-limite relative au critère de défaillance et les méthodes de Monte-Carlo basées sur la simulation numérique des variables aléatoires du modèle et l’estimation statistique des probabilités cibles. Pour l’analyse de sensibilité, une approche locale et une approche globale sont retenues. Ces différentes méthodes sont d’abord testées sur des applications académiques afin de mettre en lumière leur intérêt dans le domaine de la CEM. Elles sont ensuite appliquées à des problèmes de lignes de transmission et d’antennes plus représentatifs de la réalité.Dans l’analyse prospective, des méthodes de résolution avancées sont proposées, basées sur des techniques spectrales requérant les développements en chaos polynomiaux et de Karhunen-Loève des processus et champs aléatoires présents dans les modèles. Ces méthodes ont fait l’objet de tests numériques encourageant, mais qui ne sont pas présentés dans le rapport de thèse, faute de temps pour leur analyse complète.