Thèse soutenue

Graphène dans des liquides ioniques : interactions aux interfaces, exfoliation, stabilisation

FR  |  
EN
Auteur / Autrice : Emilie Bordes
Direction : Agílio PáduaMargarida Costa Gomes
Type : Thèse de doctorat
Discipline(s) : Chimie-Physique
Date : Soutenance le 11/12/2017
Etablissement(s) : Université Clermont Auvergne‎ (2017-2020)
Ecole(s) doctorale(s) : École doctorale des sciences fondamentales (Clermont-Ferrand)
Partenaire(s) de recherche : Laboratoire : Institut de Chimie de Clermont-Ferrand (Aubière, Puy-de-Dôme ; 2012-....)
Jury : Président / Présidente : Marc Dubois
Examinateurs / Examinatrices : Luis Miguel Varela Cabo, Cécile Cottin-Bizonne, Mireille Turmine
Rapporteur / Rapporteuse : Luis Miguel Varela Cabo, Cécile Cottin-Bizonne

Résumé

FR  |  
EN

L'exfoliation en phase liquide du graphite est l'une des méthodes les plus prometteuses pour augmenter la production et la disponibilité commerciale du graphène. Le processus d'exfoliation peut être décrit, de manière conceptuelle, en quatre étapes: le contact du graphite avec le liquide, l'intercalation du solvant entre les feuillets de graphène, la dispersion du matériau à deux dimension et sa stabilisation en phase liquide. Comme les liquides ioniques peuvent être facilement obtenus avec différentes structures moléculaires et donc des propriétés physicochimiques modulables, ils ont été utilisés dans cette thèse comme milieux liquides pour l'exfoliation du graphite. Notre objectif est d'optimiser l'exfoliation du graphite à travers la compréhension des mécanismes moléculaires et des interactions impliquées dans chaque étape du processus. Les énergies interfaciale graphite-liquide ont été calculées à partir de tensions de surface et d'angles de contact mesurées entre des liquides ioniques et du graphite pour déterminer l'affinité de différents liquides à la surface du graphite. Afin d'étudier cette interface liquide - solide, des simulations en dynamique moléculaire ont été menées pour analyser l'organisation des liquides ioniques à la surface du graphite. De même, l'énergie libre nécessaire pour créer des cavités au sein du liquide ionique a été calculée.Des simulations moléculaires ont également été réalisées pour modéliser l'exfoliation d'un feuillet de graphène à partir de graphite en apportant une vue microscopique de l'intercalation des molécules de solvant. L'énergie nécessaire à l'exfoliation a pu être calculée en présence de différents liquides. Des composés polyaromatiques ont été considérés comme des modèles pour le graphène car ils peuvent être facilement obtenus purs, sans variabilité de structure, défauts ou groupes fonctionnels non contrôlés. Les enthalpies de dissolution du naphtalène, anthracène et pyrène dans différents liquides ioniques ont été mesurées par calorimétrie en solution et liées à leur solubilité. L'organisation des ions autour de ces composés modèles a été étudiée par simulation moléculaire et spectroscopie Infra-Rouge.Après l'exfoliation, les échantillons de graphène en suspension dans différents liquides ioniques ont été caractérisés expérimentalement en termes de taille de feuillets (microscopie électronique à transmission et microscopie à force atomique), nombre de couches de graphène (microscopie à force atomique, spectroscopie Raman), concentration totale (spectroscopie UV-visible) et pureté du matériau exfolié (spectroscopie de photoélectrons~X). Vingt liquides ioniques différents à base de cations imidazolium, pyrrolidinium et ammonium et d'anions bis (trifluorométhylsulfonyl)imide, triflate, dicyanamide, tricyanométhanide et méthylsulfate ont été testés. Les interactions moléculaires permettant d'établir de règles de conception pour les liquides ioniques capables d'exfolier les matériaux carbonés ont été identifiées. Le cation pyrrolidinium a montré des résultats prometteurs dans toutes les étapes du processus d'exfoliation, par rapport au cation imidazolium ou ammonium. La sélection d'un grand anion flexible a réduit l'énergie interfaciale avec le graphite, dispersé les nanocarbones en augmentant l'entropie du système et stabilisé le graphite exfolié en plus grande quantité. Un petit anion tel que le triflate semble être favorable à l'obtention de graphène, même si la taille des couches et leur quantité sont réduites. Un liquide ionique ayant une partie apolaire importante facilitera l'insertion et la dispersion du nanomatériau de carbone. Pour la stabilisation du graphite, les interactions alkyle-π et π- π sont décisives.