Thèse soutenue

Théorèmes limites pour des fonctionnelles de clusters d'extrêmes et applications

FR  |  
EN
Auteur / Autrice : José Gregorio Gomez Garcia
Direction : Paul Doukhan
Type : Thèse de doctorat
Discipline(s) : Mathématiques - EM2C
Date : Soutenance le 13/11/2017
Etablissement(s) : Cergy-Pontoise
Ecole(s) doctorale(s) : École doctorale Économie, Management, Mathématiques, Physique et Sciences Informatiques (Cergy-Pontoise, Val d'Oise)
Partenaire(s) de recherche : Laboratoire : Analyse, géométrie et modélisation (Cergy-Pontoise, Val d'Oise ; 1993-....)
Jury : Président / Présidente : Eva Löcherbach
Examinateurs / Examinatrices : Eva Löcherbach, Joseph Rynkiewicz
Rapporteurs / Rapporteuses : Johan Segers, Patrice Bertail

Résumé

FR  |  
EN

Cette thèse traite principalement des théorèmes limites pour les processus empiriques de fonctionnelles de clusters d'extrêmes de séquences et champs aléatoires faiblement dépendants. Des théorèmes limites pour les processus empiriques de fonctionnelles de clusters d'extrême de séries temporelles stationnaires sont donnés par Drees & Rootzén [2010] sous des conditions de régularité absolue (ou ''ß-mélange''). Cependant, ces conditions de dépendance de type mélange sont très restrictives : elles sont particulièrement adaptées aux modèles dans la finance et dans l'histoire, et elles sont de plus compliquées à vérifier. Généralement, pour d'autres modèles fréquemment rencontré dans les domaines applicatifs, les conditions de mélange ne sont pas satisfaites. En revanche, les conditions de dépendance faible, selon Doukhan and Louhichi [1999] et Dedecker & Prieur [2004a], sont des conditions qui généralisent les notions de mélange et d'association. Elles sont plus simple à vérifier et peuvent être satisfaites pour de nombreux modèles. Plus précisément, sous des conditions faibles, tous les processus causals ou non causals sont faiblement dépendants: les processus Gaussien, associés, linéaires, ARCH(∞), bilinéaires et notamment Volterra entrent dans cette liste. À partir de ces conditions favorables, nous étendons certains des théorèmes limites de Drees & Rootzén [2010] à processus faiblement dépendants. En outre, comme application des théorèmes précédents, nous montrons la convergence en loi de l'estimateur de l'extremogramme de Davis & Mikosch [2009] et l'estimateur fonctionnel de l'indice extrémal de Drees [2011] sous dépendance faible. Nous démontrons un théorème de la valeur extrême pour les champs aléatoires stationnaires faiblement dépendants et nous proposons, sous les mêmes conditions, un critère du domaine d'attraction d'une loi d'extrêmes. Le document se conclue sur des théorèmes limites pour les processus empiriques de fonctionnelles de clusters d’extrêmes de champs aléatoires stationnaires faiblement dépendants, et met en évidence la convergence en loi de l'estimateur d'un extremogramme de processus spatio-temporels stationnaires faiblement dépendants en tant qu'application.