Thèse soutenue

Schémas d'ordre élevé pour des simulations réalistes en électrophysiologie cardiaque

FR  |  
EN
Auteur / Autrice : Charlie Douanla Lontsi
Direction : Yves Coudière
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées et calcul scientifique
Date : Soutenance le 15/11/2017
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale Mathématiques et informatique (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Institut de mathématiques de Bordeaux - CARMEN
Jury : Président / Présidente : Florence Hubert
Examinateurs / Examinatrices : Yves Coudière, Florence Hubert, Stéphanie Salmon, Omar Lakkis, Charles Pierre, Muriel Boulakia
Rapporteur / Rapporteuse : Stéphanie Salmon, Omar Lakkis

Résumé

FR  |  
EN

Les simulations numériques réalistes en électrophysiologie cardiaque ont un coût de calcul extrêmement élevé. Ce coût s’explique en grande partie par la raideur, à la fois en temps et en espace, d’une onde de « potentiel d’action » (PA). Par ailleurs, les phénomènes observés sont très instationnaires et s’étudient en temps long. Une description précise de la dynamique des PA est cruciale pour construire des modèles numériques pertinents d’un point de vue médical ou clinique. Cet aspect fondamental ne peut être contourné dans les études numériques réalistes.La raideur de l’onde de PA ne peut être captée numériquement qu’en ayant recours à des maillages très fins. Ces maillages très fins induisent un coût de calcul très important, et introduisent aussi des erreurs supplémentaires : les systèmes linéaires à résoudre deviennent très mal conditionnés. Au final, les erreurs numériques peuvent être particulièrement grandes dans les simulations alors que leur contrôle est évidemment essentiel pour assurer la fiabilité des résultats. Jusqu’à présent, très peu de résultats sont disponibles pour assurer cette fiabilité. Dans les faits, les erreurs sont la plupart du temps contrôlées par des procédés empiriques. Il existe quelques résultats théoriques étudiant la convergence et la stabilité des schémas numériques associés. En pratique, en plus d'avoir un contrôle de l'erreur sur le potentiel, il est aussi nécessaire d'avoir un contrôle de l’erreur sur des quantités macroscopiques décrivant la dynamique de l’onde de PA : temps d’activation, durée du PA, propriétés de restitution... Ces quantités ont en effet une interprétation physiologique qui permet de caractériser le caractère arythmogène des tissus.Les modèles sont des systèmes d’EDP de réaction-diffusion couplés avec des systèmes d’équations différentielles pouvant être très raides, les modèles ioniques. Ils sont actuellement discrétisés par éléments finis conforme (Lagrange) et par des schémas en temps d’ordre un ou deux. Dans ce travail, nous concevons et évaluons l’intérêt d'utiliser des méthodes d’ordre supérieure pour ces systèmes. Parallèlement nous introduisons d'une part une nouvelle classe de schémas appelé schémas exponentiel Adams Bashforth intégral (IEAB), et d'autre part des schémas Rush Larsen (RL) d'ordre élevé. Ces nouveaux schémas sont des schémas multipas de type exponentiels. Nous montrons qu'ils possèdent des bonnes propriétés de stabilité et permettent de faire face efficacement à la raideur des modèles ioniques. Les schémas que nous proposons sont comparés numériquement (en terme de précision, coût en temps de calcul et stabilité) à plusieurs schémas classiques, ainsi qu'aux schémas exponentiels (RL1, RL2) communément utilisés pour des simulations en électrophysiologie cardiaque. Nous proposons des techniques permettant de calculer avec précision les quantités d’intérêts cliniques (temps d’activation, de récupération, durée du potentiel d’action). Des résultats théoriques de convergence en temps et de convergence globale (espace et temps) sont énoncés et prouvés. Ces résultats sont ensuite illustrés numériquement à travers le modèle monodomaine et les modèles ioniques de Beeler Reuter, de Ten Tusscher et al. L’intérêt d'utiliser des schémas d'ordre élevés est aussi évalué sur des ondes spirales en 2D et 3D.