Thèse soutenue

Commutateurs, analyse spectrale et applications aux opérateurs de Schrödinger discrets

FR  |  
EN
Auteur / Autrice : Marc Adrien Mandich
Direction : Sylvain Golenia
Type : Thèse de doctorat
Discipline(s) : Mathematiques pures
Date : Soutenance le 13/11/2017
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale Mathématiques et informatique (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Equipe de recherche : Institut de mathématiques de Bordeaux
Jury : Président / Présidente : Jean-Marc Bouclet
Examinateurs / Examinatrices : Mouez Dimassi, Thierry Jecko, Stanislav Kupin, El Maati Ouhabaz
Rapporteurs / Rapporteuses : Zied Ammari, Serge Richard

Résumé

FR  |  
EN

L’objet de cette thèse est l’étude spectrale et dynamique de systèmes de la mécanique quantique en utilisant des techniques de commutateurs. Deux parmi les trois articles présentés traitent l’opérateur de Schrödinger discret sur un réseau. Dans le premier article, un principe d’absorption limite est établi pour le Laplacien discret multidimensionnel perturbé par la somme d’un potentiel de type Wigner-von Neumann et d’un potentiel de type longue portée. Ce résultat implique notamment l’absolue continuité du spectre de cet Hamiltonien à certaines énergies. Dans le second article, nous considérons à nouveau l’opérateur de Schrödinger discret multidimensionnel dont le potentiel est de type longue portée. Il est démontré que les fonctions propres correspondant à des valeurs propres de l’Hamiltonien décroissent sous-exponentiellement lorsque ces dernières ne sont pas un seuil. En dimension un, il est démontré de surcroît que ces fonctions propres décroissent exponentiellement. Une conséquence de ceci est l’absence de valeurs propres dans la partie centrale du spectre délimité aux extrémités par des seuils. Le troisième article étudie des propriétés dynamiques d’Hamiltoniens vérifiant des hypothèses minimales dans la théorie des commutateurs. En se basant sur une estimation des vitesses minimales d’une part et une version améliorée du théorème du RAGE d’autre part, nous dérivons deux estimations de propagation pour cette famille d’Hamiltoniens. Ces estimations indiquent que les états du système se comportent dynamiquement de façon très similaire aux états de diffusion. Toutefois, ceci n’écarte pas la possibilité de spectre singulier continu.