Etude de l'intéraction nanoparticules-bactéries : application à l'élaboration d'un biocapteur
Auteur / Autrice : | Marion Mathelié-Guinlet |
Direction : | Touria Cohen-Bouhacina, Marie-Hélène Delville |
Type : | Thèse de doctorat |
Discipline(s) : | Lasers, matière et nanosciences |
Date : | Soutenance le 17/10/2017 |
Etablissement(s) : | Bordeaux |
Ecole(s) doctorale(s) : | École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde ; 1995-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Ondes et Matière d'Aquitaine - Institut de chimie de la matière condensée de Bordeaux (Pessac) |
Jury : | Président / Présidente : Marie-Christine Durrieu |
Examinateurs / Examinatrices : Touria Cohen-Bouhacina, Marie-Hélène Delville, Marie-Christine Durrieu, Magali Phaner-Goutorbe, Christian Marlière, Rose-Marie Sauvage, Laure Béven, Christine Grauby-Heywang | |
Rapporteurs / Rapporteuses : Magali Phaner-Goutorbe, Christian Marlière |
Résumé
Malgré l'enthousiasme croissant pour les nanotechnologies, les nanoparticules (NPs) peuvent interagir avec les systèmes biologiques et affecter leur comportement, et pourraient ainsi présenter un danger pour les écosystèmes et l’Homme. Il est donc essentiel de connaître leurs mécanismes d'interactions afin non seulement de prévenir leurs risques potentiels, mais également de bénéficier de leurs propriétés uniques, par exemple dans la conception des biocapteurs. Dans ce contexte, nous étudions la cytotoxicité des NPs de silice, de tailles et charges diverses, sur les propriétés des bactéries Escherichia coli et Bacillus subtilis, au moyen de la microscopie à force atomique et des tests de viabilité. Les NPs chargées négativement (NPs-) de diamètre inférieur à un diamètre critique φc, 50 - 80 nm, (i) mènent à l'isolation des bactéries E. coli, (ii) induisent une "sphérification" de la cellule initialement en bâtonnet, (iii) provoquent des lésions dans la membrane externe et une réorganisation de sa structure. Pour la bactérie B. subtilis, seule la dégradation de la structure du peptidoglycane a été observée. Cependant, pour les deux souches, une activité antibactérienne a été démontrée pour les NPs- en dessous de φc, qui peuvent conduire à la lyse cellulaire tandis que, au-dessus de φc, les NPs- n’ont aucun effet sur la population, la morphologie ou la structure bactérienne. En ce qui concerne les NPs chargées positivement, elles conduisent, quel que soit leur diamètre, à une forte agrégation des cellules, en raison des interactions électrostatiques, et tendent à favoriser la formation d'invaginations membranaires, ne menant pas nécessairement à la lyse cellulaire. Cette étude fondamentale a mené au développement d’un biocapteur électrochimique pour la détection de bactéries, application notable pour des problèmes biomédicaux, environnementaux et de défense. Les NPs, intégrées à ces outils, offrent un mode de détection rapide, très sensible et peu coûteux. Expérimentalement, une multicouche de polyélectrolytes a été utilisée pour immobiliser des NPs inoffensives (φ = 100 nm), auxquelles sont ensuite fixés des anticorps spécifiques, afin d'améliorer la détection finale de la bactérie E. coli. L’ensemble des étapes a été optimisé par le procédé du spin coating et étudié à l'aide de mesures de microbalance à quartz et de voltametrie cyclique. L’intégration de NPs au biocapteur a permis une détection linéaire et non saturée des bactéries E. coli dans une large gamme de concentration (jusqu’à 10^9 CFU/mL) pour une limite de détection de 10^6 CFU/mL.