Thèse soutenue

Imagerie quantitative des molécules uniques en profondeur dans les échantillons biologique à l'aide d'optiques adaptatives

FR  |  
EN
Auteur / Autrice : Corey Butler
Direction : Jean-Baptiste Sibarita
Type : Thèse de doctorat
Discipline(s) : Bioimagerie
Date : Soutenance le 04/07/2017
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale Sciences de la vie et de la santé (Talence, Gironde ; 1993-....)
Partenaire(s) de recherche : Laboratoire : Institut Interdisciplinaire de Neurosciences (Bordeaux)
Jury : Président / Présidente : Valentin Nägerl
Examinateurs / Examinatrices : Sandrine Lévêque-Fort, Laurent Cognet, Xavier Levecq
Rapporteurs / Rapporteuses : Sandrine Lévêque-Fort, Aleksandra Radenovic

Résumé

FR  |  
EN

La microscopie optique est un outil indispensable pour la recherche de la neurobiologie et médecine qui permet l’étude des cellules dans leur environnement natif. Les processus sous-cellulaires restent néanmoins cachés derrière les limites de la résolution optique, ce qui rend la résolution des structures plus petites que ~300nm impossible. Récemment, les techniques de la localisation des molécules individuelles (SML) ont permis le suivi des protéines de l’échelle nanométrique grâce à l’ajustement des molécules uniques à la réponse impulsionnelle du système optique. Ce processus dépend de la quantité de lumière recueilli et rend ces techniques très sensibles aux imperfections de la voie d’imagerie, nommé des aberrations, qui limitent l’application de SML aux cultures cellulaires sur les lamelles de verre. Un système commercial d’optiques adaptatives est implémenté pour compenser les aberrations du microscope, et un flux de travail est défini pour corriger les aberrations dépendant de la profondeur qui rend la 3D SML possible dans les milieux biologiques complexes. Une nouvelle méthode de SML est présentée qui utilise deux objectifs pour détecter le spectre d’émission des molécules individuelles pour des applications du suivi des particules uniques dans 5 dimensions (x,y,z,t,λ) sans compromis ni de la résolution spatiotemporelle ni du champ de vue. Pour faciliter les analyses de manière quantitative des Go de données générés, le développement des outils biochimiques, numériques et optiques est présenté. Ensemble, ces approches ont le but d’amener l’imagerie quantitative des molécules uniques dans les échantillons biologiques complexes