Caractérisation et modélisation du comportement thermomécanique d'un composite 3D carbone/carbone : étude du comportement aux interfaces à haute température
Auteur / Autrice : | Adrien Gillard |
Direction : | Gérard Louis Vignoles |
Type : | Thèse de doctorat |
Discipline(s) : | Physico-chimie de la matière condensée |
Date : | Soutenance le 03/03/2017 |
Etablissement(s) : | Bordeaux |
Ecole(s) doctorale(s) : | École doctorale des sciences chimiques (Talence, Gironde ; 1991-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire des Composites Thermostructuraux (Bordeaux) |
Jury : | Président / Présidente : Yves Rémond |
Examinateurs / Examinatrices : Gérard Louis Vignoles, Yves Rémond, Laurent Delannay, Pascal Reynaud, Damien Halm, Sylvain Chupin, Guillaume Couégnat, Olivier Caty, Christophe Tallaron | |
Rapporteur / Rapporteuse : Laurent Delannay, Pascal Reynaud |
Mots clés
Résumé
Les composites 3D C/C sont utilisés, entre autres, comme bouclier thermique dans le domaine aérospatial en raison de leurs propriétés thermomécaniques et de leur résistance à l’ablation à haute température. Si leur comportement macroscopique a déjà été largement étudié par le passé, aucun modèle ne permet actuellement de relier de manière satisfaisante le comportement des constituants au comportement effectif du composite. En particulier, les modèles phénoménologiques ne permettent pas d’anticiper l’effet d’un éventuel changement de constituant. De plus, le rôle des interfaces dans le comportement hors-axe du composite reste à déterminer. L’objectif de ce travail est donc d’établir un modèle multi-échelle du comportement thermomécanique d’un 3D C/C en s’intéressant plus particulièrement au rôle des interfaces à haute température. Ce travail s’articule autour de la caractérisation de la morphologie et du comportement thermomécanique du matériau et de ses constituants. Le développement d’un dispositif original de push-out a notamment permis de mesurer les propriétés des interfaces baguette/baguette et fibre/matrice en température. Ces données expérimentales ont été intégrées à un modèle numérique du matériau à l'échelle mésoscopique. Un modèle de zone cohésive ad hoc a été développé afin de prendre en compte le comportement spécifique des interfaces. Les simulations éléments finis ainsi réalisées ont permis de reproduire avec succès le comportement non-linéaire du matériau de même que l'évolution de ses propriétés effectives avec la température. Ce modèle permet ainsi de relier les mécanismes d’endommagement observés aux échelles inférieures au comportement macroscopique du 3D C/C.