Thèse soutenue

Modélisation de stratégies d'introduction de populations, effets Allee et stochasticité

FR  |  
EN
Auteur / Autrice : Nicolas Bajeux
Direction : Olivier Bernard
Type : Thèse de doctorat
Discipline(s) : Automatique, traitement du signal et des images
Date : Soutenance le 07/07/2017
Etablissement(s) : Université Côte d'Azur (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Nice ; 1992-....)
Partenaire(s) de recherche : établissement de préparation : Université de Nice (1965-2019)
Laboratoire : Institut national de recherche en informatique et en automatique (France). Unité de recherche (Sophia Antipolis, Alpes-Maritimes) - Biological control of artificial ecosystems
Jury : Président / Présidente : Xavier Fauvergue
Examinateurs / Examinatrices : Olivier Bernard, Xavier Fauvergue, Julien Arino, Jérôme Coville, Fabien Campillo, Christelle Lopes
Rapporteurs / Rapporteuses : Julien Arino, Jérôme Coville

Résumé

FR  |  
EN

Cette thèse s'intéresse à l'étude des stratégies d'introduction de populations dans l'environnement. Les deux principaux contextes présentés sont la lutte biologique et la réintroduction d'espèces. Si ces deux types d'introduction diffèrent, des processus biotiques et abiotiques les influencent de manière similaire. En particulier les populations introduites, souvent de petite taille, peuvent être sensibles à diverses formes de stochasticité, voire subir une baisse de leur taux de croissance à faible effectif, ce qu'on appelle « effet Allee ». Ces processus peuvent interagir avec les stratégies d'introduction des organismes et moduler leur efficacité. Dans un premier temps, nous modélisons le processus d'introduction à l'aide de systèmes dynamiques impulsionnels : la dynamique de la population est décrite par des équations différentielles ordinaires qui, à des instants donnés, sont perturbées par des augmentations soudaines de la taille de la population. Cette approche se concentre sur l'influence des effets Allee sur les populations isolées (réintroduction) ou dans un cadre proie-prédateur (lutte biologique). Dans un second temps, en nous concentrant sur l'aspect réintroduction, nous étendons ce cadre de modélisation pour prendre en compte des aspects stochastiques liés à l'environnement ou aux introductions elles-mêmes. Finalement, nous considérons un modèle individu centré pour étudier l'effet de la stochasticité démographique inhérente aux petites populations. Ces différentes approches permettent d'analyser l'influence de la distribution temporelle des introductions et ainsi déterminer les stratégies qui maximisent les chances de succès des introductions.