Thèse soutenue

IRM computationnelle de diffusion et de perfusion en imagerie cérébrale

FR  |  
EN
Auteur / Autrice : Marco Pizzolato
Direction : Rachid Deriche
Type : Thèse de doctorat
Discipline(s) : Automatique, traitement du signal et des images
Date : Soutenance le 31/03/2017
Etablissement(s) : Université Côte d'Azur (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Nice ; 1992-....)
Partenaire(s) de recherche : établissement de préparation : Université de Nice (1965-2019)
Laboratoire : Institut national de recherche en informatique et en automatique (France). Unité de recherche (Sophia Antipolis, Alpes-Maritimes) - Computational Imaging of the Central Nervous System
Jury : Président / Présidente : Nikos Paragios
Examinateurs / Examinatrices : Rachid Deriche, Nikos Paragios, Christian Barillot, Maxime Descoteaux, Olivier Coulon, Gloria Menegaz
Rapporteur / Rapporteuse : Christian Barillot, Maxime Descoteaux

Résumé

FR  |  
EN

Les techniques d'imagerie par résonance magnétique de Diffusion (IRMd) et de Perfusion (IRMp) permettent la détection de divers aspects importants et complémentaires en imagerie cérébrale. Le travail effectué dans cette thèse présente des contributions théoriques et méthodologiques sur les modalités d'IRM basées sur des images pondérées en diffusion, et sur des images de perfusion par injection de produit de contraste. Pour chacune des deux modalités, les contributions de la thèse sont liées au développement de nouvelles méthodes pour améliorer la qualité, le traitement et l'exploitation des signaux acquis. En IRM de diffusion, la nature complexe du signal est étudiée avec un accent sur l'information de phase. Le signal complexe est ensuite exploité pour corriger le biais induit par le bruit d'acquisition des images, améliorant ainsi l'estimation de certaines métriques structurelles. En IRM de perfusion, le traitement du signal est revisité afin de tenir compte du biais dû à la dispersion du bolus. On montre comment ce phénomène, qui peut empêcher la correcte estimation des métriques de perfusion, peut aussi donner des informations importantes sur l'état pathologique du tissu cérébral. Les contributions apportées dans cette thèse sont présentées dans un cadre théorique et méthodologique validé sur de nombreuses données synthétiques et réelles.