Thèse soutenue

Intégrer des sources de données hétérogènes dans le Web de données

FR  |  
EN
Auteur / Autrice : Franck Michel
Direction : Johan MontagnatCatherine Faron
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 03/03/2017
Etablissement(s) : Université Côte d'Azur (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Nice ; 1992-....)
Partenaire(s) de recherche : établissement de préparation : Université de Nice (1965-2019)
Laboratoire : Laboratoire Informatique, signaux et systèmes (Sophia Antipolis, Alpes-Maritimes) - Scalable and Pervasive softwARe and Knowledge Systems - Web-Instrumented Man-Machine Interactions, Communities and Semantics
Jury : Président / Présidente : Fabien Gandon
Examinateurs / Examinatrices : Johan Montagnat, Catherine Faron, Fabien Gandon, Oscar Corcho, Marie-Christine Rousset, Cécile Callou, Pascal Neveu, Pascal Molli
Rapporteur / Rapporteuse : Oscar Corcho, Marie-Christine Rousset

Résumé

FR  |  
EN

Le succès du Web de Données repose largement sur notre capacité à atteindre les données stockées dans des silos invisibles du web. Dans les 15 dernières années, des travaux ont entrepris d’exposer divers types de données structurées au format RDF. Dans le même temps, le marché des bases de données (BdD) est devenu très hétérogène avec le succès massif des BdD NoSQL. Celles-ci sont potentiellement d’importants fournisseurs de données liées. Aussi, l’objectif de cette thèse est de permettre l’intégration en RDF de sources de données hétérogènes, et notamment d'alimenter le Web de Données avec les données issues des BdD NoSQL. Nous proposons un langage générique, xR2RML, pour décrire le mapping de sources hétérogènes vers une représentation RDF arbitraire. Ce langage étend des travaux précédents sur la traduction de sources relationnelles, CSV/TSV et XML en RDF. Sur cette base, nous proposons soit de matérialiser les données RDF, soit d'évaluer dynamiquement des requêtes SPARQL sur la base native. Dans ce dernier cas, nous proposons une approche en deux étapes : (i) traduction d’une requête SPARQL en une requête pivot, abstraite, en se basant sur le mapping xR2RML ; (ii) traduction de la requête abstraite en une requête concrète, prenant en compte les spécificités du langage de requête de la BdD cible. Un souci particulier est apporté à l'optimisation des requêtes, aux niveaux abstrait et concret. Nous démontrons l’applicabilité de notre approche via un prototype pour la populaire base MongoDB. Nous avons validé la méthode dans un cas d’utilisation réel issu du domaine des humanités numériques.