Thèse soutenue

Relation entre structure et texture de matériaux poreux et l'évaluation de leurs propriétés de piégeage du CO2

FR  |  
EN
Auteur / Autrice : Virginie Benoit
Direction : Philip LlewellynIsabelle Beurroies
Type : Thèse de doctorat
Discipline(s) : Physique et sciences de la matière. Matière condensée et nanosciences
Date : Soutenance le 19/12/2017
Etablissement(s) : Aix-Marseille
Ecole(s) doctorale(s) : Ecole Doctorale Physique et Sciences de la Matière (Marseille)
Partenaire(s) de recherche : Laboratoire : Matériaux divisés, interfaces, réactivité, électrochimie (MADIREL) (Marseille)
Jury : Président / Présidente : Pascale Roubin
Examinateurs / Examinatrices : Guillaume Maurin
Rapporteurs / Rapporteuses : Frédéric Plantier, Christophe Volkringer

Résumé

FR  |  
EN

Les Membranes à Matrices Mixtes (MMM’s) sont des matériaux prometteurs pour la capture de CO2 en comparaison aux technologies actuelles telles que l’absorption par solvants aminés (monoéthanolamine). Les ‘Metal-Organic Frameworks’ (MOFs) sont des matériaux poreux cristallins envisagés pour être intégrés sous forme de nanoparticules aux polymères des MMM’s. Ils résultent de la combinaison de nœuds métalliques et de ligands organiques pour former des structures tridimensionnelle (3D) organisées. Ils possèdent divers avantages : des aires spécifiques et des volumes poreux élevés, des tailles de pores contrôlables, et pour certains une stabilité à l’eau. Les MOFs ont une chimie adaptable aux applications souhaitées contrairement aux adsorbants classiques tels que les charbons actifs, les zéolithes.D’une part, ce travail a eu pour objectif l’évaluation des performances de séparation du CO2 par des MOFs microporeux en vue des séparations CO2/N2 et CO2/CH4. Les interactions ‘gaz-adsorbant’ sont favorisées au sein des MOFs par : (1) une réduction de la taille de pores et du volume poreux pouvant engendrer des effets de confinements, de tamis moléculaire ou (2) par la présence de groupements de surface. En conséquence, ces paramètres peuvent contribuer à l’amélioration de la sélectivité du CO2 et ont été étudiés pour divers systèmes de MOFs microporeux. D’autre part, les paramètres texturaux (aire spécifique, volume poreux) et thermodynamiques (enthalpies d’adsorption) ont été corrélés aux quantités maximales de CO2 adsorbées au travers d’une approche quantitative de relation de structure-propriété pour établir des tendances linéaires.