
AIX-MARSEILLE UNIVERSITÉ
ECOLE DOCTORALE 184
Institut de Mathématiques de Marseille, UMR 7373

Thèse présentée pour obtenir le grade universitaire de docteur

Discipline: Mathématiques appliquées
Spécialité: Statistiques

JEBREEN Kamel

Titre de la thèse: Modèles Graphiques pour la Classification et les
Séries Temporelles

Soutenue le October 10, 2017 devant le jury composé de:

Anne FRANCOISE YAO Professeur - Université Clermont Ferrand Rapporteur
Abdulhakeem EIDEH Professeur associé - Université Al Quds Rapporteur
Denis ALLARD Directeur de Recherche - INRA Avignon Président
Liliane BEL Professeur - Agro ParisTech Examinateur
Badih GHATTAS Maître de Conférences - Université d’Aix-Marseille Directeur





AIX-MARSEILLE UNIVERSITY
ECOLE DOCTORALE 184
Mathematical Institute of Marseille, UMR 7373

Submitted in partial fulfillment for the degree of

Discipline: Applied Mathematics
Specialty: Statistics

JEBREEN Kamel

Thesis title: Graphical Models for Classification and Time Series

Defended on October 10, 2017 before the committee:

Anne FRANCOISE YAO Professor - Clermont Ferrand University Reviewer
Abdulhakeem EIDEH Associate Professor - Al Quds University Reviewer
Denis ALLARD Professor - INRA Avignon President
Liliane BEL Professor - Agro ParisTech Examiner
Badih GHATTAS Professor - Aix-Marseille University Advisor





Résumé
Dans cette thèse nous nous intéressons aux méthodes de classifications super-

visées utilisant les réseaux Bayésiens. L’avantage majeur de ces méthodes est
qu’elles peuvent prendre en compte les interactions entre les variables explica-
tives. Elles reposent cependant sur des hypothèses de loi et leur complexité
algorithmique augmente considérablement avec le nombre de variables explica-
tives.
Dans une première partie nous proposons une procédure de discrétisation spé-
cifique et une procédure de sélection de variables qui permettent d’améliorer
considérablement les classifieurs basés sur des réseaux bayésiens. Cette procé-
dure a montré de très bonnes performances empiriques sur un grand choix de
jeux de données connus de l’entrepôt d’apprentissage automatique (UCI Machine
Learning repository). Une application pour la prévision de type d’épilepsie à par-
tir de de caractéristiques des patients extraites des images de Tomographie par
émission de positrons (TEP) confirme l’efficacité de notre approche comparé à
des approches communes de classifications supervisées.

Dans la deuxième partie de cette thèse nous nous intéressons à la modélisation
des interactions entre des variables dans le contexte de séries chronologiques en
grande dimension. Après avoir fait l’état de l’art des méthodes adaptées à ce con-
texte nous avons proposé deux nouvelles approches. La première, similaire à la
technique "neighborhood Lasso" remplace la technique Lasso par des machines
à vecteurs de supports. La motivation principale est que la méthode Lasso, bien
qu’efficace pour la sélection des variables, elle ne l’est que dans le cas linéaire et
le nombre de variables sélectionnées ne peut dépasser la taille de l’échantillon.
La deuxième approche est un réseau bayésien restreint: les variables observées à
chaque instant et à l’instant précédent sont utilisées dans un réseau dont la struc-
ture est restreinte. Nous montrons l’efficacité de ces approches par des simula-
tions utilisant des donnés simulées issues de modèles linéaires, non-linéaires et
un mélange des deux. Les approches proposées donnent en général de meilleurs
résultats dans les cas non linéaires en grande dimension.

Mots-clés: Réseaux Bayésiens; Classification; Sélection de Variables; Discréti-
sation; Modèles Graphiques; Séries Temporelles.
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Abstract
First, in this dissertation, we will show that Bayesian networks classifiers are

very accurate models when compared to other classical machine learning meth-
ods. Discretising input variables often increase the performance of Bayesian
networks classifiers, as does a feature selection procedure.
Different types of Bayesian networks may be used for supervised classification.
We combine such approaches together with feature selection and discretisation
to show that such a combination gives rise to powerful classifiers. A large choice
of data sets from the UCI machine learning repository are used in our experi-
ments, and the application to Epilepsy type prediction based on PET scan data
confirms the efficiency of our approach.

Second, in this dissertation we also consider modelling interaction between
a set of variables in the context of time series and high dimension. We sug-
gest two approaches; the first is similar to the neighbourhood lasso where the
lasso model is replaced by Support Vector Machines (SVMs); the second is a
restricted Bayesian network for time series. We demonstrate the efficiency of
our approaches simulations using linear and nonlinear data set and a mixture of
both.

Keywords: Bayesian Networks; Classification; Feature Selection; Discretisa-
tion; Graphical Models; Time Series.
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1.Introduction
Graphical models (Lauritzen (1996)) are a mixture of graph theory studies

and probability. They are employed in various statistical studies, as they give
an explicit, graphical, and interpretable representation of uncertain knowledge,
based on the concept of conditional independence. The graph representing and
visualising the relationships between many variables allows us to answer many
queries, as it extracts the conditional independence relationships between the
variables from their parametric forms. Hence, graphical models employ various
algorithms to implement probabilistic inference efficiently. These models have
been applied by a wide range of technicians in supervised and unsupervised
learning, such as regression, classification, probabilistic expert models, image
processing, and inferring genes networks.

The probabilistic graphical model is a graph in which the nodes correspond to
random variables, and the edges in the graph represent the qualitative dependen-
cies between the variables. The missing edges between two nodes mean that the
corresponding random variables are conditionally independent given the other
variables. The edges are parametric conditional distributions encoding the joint
probability distribution over all the variables in the graph. We refer to the pat-
tern of edges as the structure of the graph and the conditional probabilities as the
parameters of joint probability distribution over all the variables in the graph.

There are two main types of graphical models: undirected and directed graph-
ical models. Undirected graphical models, also known as Markov Networks or
Markov random fields, are used more frequently by physics and vision commu-
nities, and directed graphical models, also known as Bayesian Networks (BNs),
Belief Networks, Generative Models, Causal Models, among others, are used more
by the machine learning communities and for Artificial Intelligence. It is also
possible to have a model with both directed and undirected arcs that is called a
chain graph or partially directed graph.

A Gaussian Graphical Model (GGM) is a graphical model in which the data
belong to the Gaussian distribution. It is intensively used in the biology and
engineering fields, such as for learning causal networks from systems biology. A
graphical model can be static or dynamic. Dynamic graphical models use time
course data to model the interaction between the variables where the arcs have
only one direction, from time point t to its next time t+ 1.

Bayesian networks (BNs), whether they are static models (Pearl (1988, 2009);
Koller and Friedman (2009); Lauritzen (1996); Jebreen and Ghattas (2016);
Jordan (1998); Friedman et al. (1997); Mitchell (1990); Murphy and Mian
(1999); Korb and Nicholson (2010)) or dynamic models (Friedman et al. (1998);
Meinshausen and Bühlmann (2006); Koller and Friedman (2009)), are directed
acyclic graphs (DAGs) and among the most important supervised and unsuper-
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vised model. This importance comes from the fact that they encode the depen-
dencies among all variables; they deal with missing data; they are used to study
the causality relations between variables and hence perform prediction; they are
a good representation for combining prior knowledge and data, as they encode
causal and probabilistic relations, and this prior knowledge can be used with
statistical methods on data to improve the models accuracy; they encode the
strength of causal relationships with probabilities and enable an effective repre-
sentation and computation of the probability density function (pdf) over a set of
random variables and are easy to adapt feature selection methods in Bayesian
networks (Heckerman et al. (1995); Heckerman (1991)). As before, the edges
between the nodes represent the probabilistic dependencies among the corre-
sponding random variables based on the concept of a Markov blanket. These
conditional dependencies in the graph are often estimated by using known sta-
tistical and computational methods.

The structure of a DAG is defined by the set of nodes (vertices) and the set
of a directed edges. The nodes represent random variables and are drawn as
circles labelled by the variable names. The edges represent a direct dependence
among the variables and are drawn by arrows between the nodes. Moreover,
an edge from node Xi to node Xj represents a statistical dependence between
the corresponding variables. Hence, the arrow indicates that a value taken by
variable Xj depends on the value taken by variable Xi, or the variable Xi’s effect
on the variable Xj. Here Xi is a parent of Xj, and, similarly, Xj is the child of Xi.
Additionally, the sets of “descendants” is the set of nodes which can be reached
on a direct path from the node, and “ancestor” nodes are the set of nodes from
which the node can be reached on a direct path. The structure of the acyclic
graph guarantees that there is no node that can be its own ancestor or its own
descendant.

A Bayesian network reflects an important conditional independence statement
to the factorisation of the joint probability of a set of nodes. That is, each vari-
able is independent of its non-descendants in the graph, given its parents. This
important property is used to reduce the number of parameters required to char-
acterise the probability density function of the variables. Reducing the number
of parameters is an efficient way to compute the posterior probabilities given the
evidence.

Learning Bayesian network (Koller and Friedman (2009); Korb and Nicholson
(2010); Heckerman et al. (1995)) is performed through two steps: learning pa-
rameters (the conditional probabilities among variables) and learning structure.
Learning the structure is a more challenging problem than estimating the pa-
rameters that depend on the correct structure. The goal of learning BNs is to
find a Bayesian network BN that approximates the joint distribution over the
set of variables X. Bayesian networks learning algorithms depend on the type
of input data : discrete data (the variable takes the values from a finite set) or
continuous data. When the training data is discrete the natural choice for the
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joint probability distribution is a multinomial distribution, and when the train-
ing data is continuous, the natural choice for the joint probability distribution is
multivariate normal distributions. In the context of Bayesian networks, this joint
distribution is called the global distribution.

There are two approaches for learning parameters in Bayesian networks: max-
imum likelihood estimation (MLE) and Bayesian estimation. The simplest ap-
proach to learn the parameters in BNs is maximum likelihood estimation, which
finds the set of parameters which maximises the likelihood function L(θ) over
the observed data. It asymptotically converges toward the true probability if the
proposed structure is correct. The Bayesian estimation method calculates the
most probable parameters given the data. This is enough to weigh the parame-
ters with an a priori knowledge. The most used prior is the Dirichlet distribution
in discrete Bayesian networks.

After learning a Bayesian network, one can obtain various probability queries
from the model. The computation of probability from a model is known as proba-
bilistic inference. Inference using a Bayesian network, also called as belief updat-
ing, is based on the Bayes theorem. Exact inference in high dimension discrete
networks becomes complex, so we introduce approximation algorithms for that,
such as forward and likelihood weighting sampling algorithms.

Learning the structure of a Bayesian network can be considered as a specific
example of selecting a probabilistic model that explains a given set of data. The
structural learning of a Bayesian network in this dissertation is divided into two
approaches: conditional independence-based approach and score-based approach.

The conditional independence based approach finds the causal relationships
between the random variables and infers the structure of the graph. It performs a
number of conditional independence tests on the data. The tests are usually done
by using statistical or information theoretic measures. Most of these approaches
need an exponential number of conditional independence tests that is unreliable.

The score-based approach maps each Bayesian network structure to a score
and searches through all structures to find the best Bayesian network that fits
the data set. The optimisation method is used to search for the best network
structure, such as greedy search, iterated hill climbing, and simulated annealing.

Bayesian networks classifiers (Friedman et al. (1997); Heckerman (1991, 1997);
Heckerman et al. (1995)) are types of Bayesian networks that aim to assign
labels, levels, or categories to the instances in training data. Statisticians in-
vestigate many approaches for learning Bayesian classifiers in order to improve
accuracy.

Classification using Bayesian networks form a big challenge, especially with re-
gard to high dimensional data. Thus feature selection algorithms were proposed
in order to remove the irrelevant and redundant variables. This dissertation illus-
trates various types of Bayesian networks classifiers: Naive Bayes (NB) (Maron
and Kuhns (1960); Minsky (1961)), Tree Augmented Naive Bayes (TAN) (Fried-
man et al. (1997)), Multinets classifier (MN) (Friedman et al. (1997); Geiger and
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Heckerman (1996)) and Unrestricted Bayesian Network classifier (UBN) (Hecker-
man et al. (1995); Heckerman (1997); Koller and Friedman (2009)).

In NB, the variables are conditionally independent given the class variable. It
calculates the probability of each class, given the other variables, by Bayes rule.
The TAN classifier takes into account the correlation between predictor variables.
It allows each variable in the network to have at most one other parent. MN
classifier estimates multiple Bayesian networks separately for each label of class
variable, and these are then used to estimate the conditional probabilities. Bayes
rule is then used to estimate the posterior probabilities. In UBN, the graph has
no restriction like NB, TAN, or MN.

In this dissertation we describe and evaluate a feature selection approach for
classification problems. Reunanen (Reunanen (2003)) views that there can be
many reasons for selecting only a subset of the variables: it is less expensive to
measure only a subset of the variables;the prediction accuracy may be improved
through removing the irrelevant variables; the predictor to be built is usually
simpler and potentially faster when less variables are used to build the model,
and knowing which variables are relevant can give insight into the nature of the
prediction problem. Therefore, the problem of focusing on the most relevant
information has become increasingly important (Hruschka et al. (2004)).

We also describe and evaluate the discretisation approach on Bayesian net-
works classifiers, as data sets are often described by continuous variables. If the
number of continuous variables is large, the model building for such data can be
difficult and/or highly inefficient. Moreover, many data mining algorithms can
only handle discrete attributes (Martínez (2010)).

We combine such approaches along with feature selection and discretisation
and show that such combination gives rise to powerful classifiers.

Fitting the models using positron emission tomography (PET) scanning data
(Guedj et al. (2015)) have an important position in field of classification. This
is due to the predictions problems. These models study the essence of the rela-
tions between the regions of interest (ROI) in the brain and the causal relations
between these variables as well as the direction of these relations if they exist
(Ramsey et al. (2010); Smith et al. (2011)). Interpreting these causal relations
requires complex and multivariate data. We view how to use Bayesian classifiers
on PET scan data and introduce solutions for the failures that researchers have
faced in previous studies to obtain the best performance within these large num-
bers of variables and their strong connectivities. The Bayesian network has the
ability to search for the best structure among high dimensional data contrary to
other methods. We focus on how to find the present connection relations be-
tween the regions to perform accuracy and correct its causality. We follow the
approaches mentioned above: feature selection approach and discretisation ap-
proach with different Bayesian networks models to overcome the difficulties of
fitting the models to these type of data sets, e.g, normality assumption on the
data and redundant or irrelevant variables.

26



Dynamic models are the extensions of static models to temporal processes.
This dissertation discusses the statistical methods used to reconstruct variable
regulatory networks using time series data. Dynamic graphical model (DGM)
is based on a dynamic system by discretising time and provide a static model
that represents the probabilistic transition of the node at time t to the node at
time t + 1,; i.e, we assume that the variable at a given time t + 1 only depends
on the past variable observed at the previous time t. Also, we assume that the
variables observed simultaneously are conditionally independent, given the past
variables. These assumptions allow the existence of a dynamic graphical model
representation. The DAG in dynamic model contains all the edges pointing out
from a variable observed at time t towards a variable observed at the next time
t + 1. The direction of the edges according to time guarantees the acyclicity of
the graph G.

We focus on estimating variables interactions, inferring causalities, and mod-
elling the temporal changes of regulation behaviours. The problem in the prac-
tical application of DGMs is the high dimension of the data compared to the
small sample size. Hence, if the number of variables is large, the parameters
describing the graphical model (edge probabilities) quickly outnumber the data
points. For this reason the graphical model in this case almost requires some
form of regularised inference, such as penalised maximum likelihood or other
shrinkage procedures. In modelling dynamic networks, a researcher is faced
with the choice of whether to include extra features such as causality and tem-
poral behaviours into the model. This choice of modelling paradigm is largely
dependent on the type and quality of data available, relevant questions to be
addressed, and statistical and computational considerations.

We are looking for simple relationships, such as variable Xi activating variable
Xj. Also, we want to capture more complex approaches such as auto-regulations.
Moreover most of the variables are not taking part in the temporal evolution of
the model, so we want to determine the few active variables involved in the reg-
ulatory machinery and the relationships between them. The purpose of studying
the dynamic models is that we want to infer a network representing the depen-
dence relationships which govern a system composed of several agents from the
observation of their activity across the short time series.

In this dissertation, the model is considered to be governed by the same rules
during the whole experiment, i.e, the process is homogeneous. Many DGM rep-
resentations have been proposed, multivariate autoregressive process (Opgen-
Rhein and Strimmer (2007)), State Space or Hidden Markov Models (Beal et al.
(2005)), nonparametric additive regression model (Imoto et al. (2002)), among
others.

Such dynamic networks were described using static modelling; e.g, correla-
tion network (Butte et al. (2000)), Covariance selection networks (Dempster
(1972)), also known as concentration graph or graphical Gaussian model, (Whit-
taker (1990)) and dynamic Bayesian networks (Friedman et al. (1998); Murphy
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and Mian (1999)).
Moreover, we suggest two approaches. The first is similar to the neighbour-

hood lasso when the lasso model is replaced by a support vector machine (SVM).
The second is a restricted Bayesian network adapted for the time series.

It is interesting to apply this work to genetics and systems biology due to
the high dimension of the data sets under study, which often contain several
thousand variables and only a few tens or hundreds of observations. Such kinds
of data are gene expression, protein signalling, and sequence data. This raises
problems in both computational complexity and the statistical significance of the
resulting networks, which are known as the “curse of dimensionality”. Moreover,
the data itself is difficult to model correctly due to the limited understanding of
the underlying phenomena. Thus, we show the efficiency of our approaches by
simulations using linear, nonlinear data set, and a mixture of both.

1.1. Dissertation Contribution
The contributions viewed in this dissertation are presented in two main parts.

Firstly, the contributions related to classification using Bayesian networks, focus-
ing on Epilepsy type prediction using PET Scan Data. Secondly, the contributions
related to inferring linear and nonlinear interaction networks using neighbour-
hood support vector machines.

1.2. Dissertation Overview
This dissertation consist of four chapters. Chapter two presents the general

definitions and concepts related to Bayesian networks. Chapter three presents
the classification using Bayesian networks with discretisation and features selec-
tion approaches. Chapter four presents the previous approaches used to infer
the interaction networks. Chapter five presents our approaches used to infer the
interaction networks using concept of graphical models.

Chapter two is an illustration of the definitions and basics related to graphical
models, Bayesian networks, conditional independencies in Bayesian networks,
Markov property, learning both parameters and structure in Bayesian networks
and inference on Bayesian networks.

Chapter three illustrates the classification using Bayesian networks classifiers
(naive Bayes, tree augmented naive Bayes, multinet classifiers, and unrestricted
Bayesian networks classifiers ) with the methodologies used to improve the accu-
racy when using Bayesian network classification as application on PET scan data.
This chapter is based on the paper published in International Conference
on Machine Learning and Applications (ICMLA 2016) CA, USA.
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Chapter four introduces the methodology to use vector autoregressive model,
ridge regression, and static Bayesian network in dynamic process. Next, we
introduce the approaches based on VAR model, such as Shrinkage approach, low
order conditional dependence, among others.

Chapter five introduces our approaches: neighbourhood support machines and
restricted Bayesian networks with experimental results on linear, nonlinear, and
a mixture of both simulated data sets. This chapter is based on the paper
accepted in International Conference on Machine Learning and Applications
(ICMLA 2017) CANCUN, MEXICO.
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2. Bayesian Networks

2.1. Introduction
Graphical models (Lauritzen (1996)) are a mixture of graph theory studies

and probability. Bayesian networks (Pearl (1988)) are a type of directed graph-
ical model used to study the causality relations between variables. A Bayesian
network reflects an important conditional independence statement to the factori-
sation of the joint probability of a set of nodes.

Bayesian networks (Friedman et al. (1997); Heckerman (1991, 1997); Heck-
erman et al. (1995)) are powerful graphical models for representing the joint
distribution of a random vector X. Bayesian networks encode the dependencies
among all variables, and they are a good representation for combining prior
knowledge and data, as they encode causal and probabilistic relations, and these
prior knowledge can be used with statistical methods on data to improve the
models accuracy. (Heckerman et al. (1995); Heckerman (1991)).

We use capital letters such as X;Y ;Z for variable names and lower-case letters
such as x; y; z to denote the specific values taken by those variables. Sets or
vectors of variables are denoted by boldface capital letters such as X; Y; Z, and
the assignments of values to the variables in these sets are denoted by boldface
lowercase letters x; y; z. The variables are sometimes called features, nodes, or
vertices, and the instances are sometimes called cases or examples (Friedman
et al. (1997)).

In this chapter, we illustrate many definitions and algorithms that are used in
graphical models to understand the concept of Bayesian networks, e.g, condi-
tional independencies in graphical models and Markov property, which leads to
the most important criterion in Bayesian networks known as d-separation. In the
next sections, we introduce more details on how to learn the Bayesian model in
both cases: discrete Bayesian networks and continuous Bayesian networks. In
the next chapter, we draw an overview of our work of Bayesian classification as
an application on PET scan data.

2.2. Graphical model: Introduction and definitions
In this section, we introduce the general notations used in the dissertation

and some basic concepts about graphical models. To understand the concept
of a probabilistic graphical model, the definition of conditional independence is
essential.

Definition 2.2.1. [Conditionally Independent, (Neapolitan (2003))]. Let
X,Y and Z be three disjoint sets of random variables, then X is condi-
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tionally independent of Y given Z and denoted by X ⊥⊥ Y|Z if and only
if

P (x|y, z) = P (x|z), (2.1)

for any possible configuration x,y and z.

From equation 2.1, we can see that there is no important information offered
by Y if the value of Z is known.

The variables may be qualitative (categorical) or numerical (measurement).
When the case under study concerns a qualitative type that is only classified in
categories and not numerically measured, the resulting data is known as cate-
gorical data. If on the other hand, the case is measured on a numeric scale, the
resulting data consists of a set of numbers and is known as measurement data.
In categorical data, if the variables Xj, j = 1, ..., p have values from a finite
set {1, ..., J}, then the data is called discrete data. Also, in numerics data, if
the values of Xj ’s belong to the set of real numbers R then the data is called
continuous data, (Neapolitan (2003); Johnson and Bhattacharyya (2014)).

A graph in statistics means a network with nodes connected by links or edges.
If the links are directed (arrows), then the graph is a directed graph, figure 2.1a.
If the links are not directed (edges), the graph is an undirected graph, figure
2.1b. And when the graph has both directed and undirected links (edges and
arrows), it is called a partially directed graph, figure 2.1c.

Definition 2.2.2. [Graphical model, (Jordan (1998))]. A graphical model is a
probabilistic graphical model (PGM), representing the conditional dependence
relations between random variables and denoted by G = < X,E >, where X is
the nonempty set of nodes (variables) and E is the set of edges connected (links
or arcs) . For more details see (Koller and Friedman (2009); Heckerman (1997);
Jordan (1998)).

There are many types of graphical models, e.g, Bayesian networks (Friedman
et al. (1997)), Markovian model (Edwards (2000)), and dynamic probability
models (Friedman et al. (1998)).

Definition 2.2.3. [Structure, (Jordan (1998)) ]. Let G =< X,E > be a graphical
model; the structure of G is the pattern that demonstrates the connections between
the set of nodes X by the set of edges E.

We will denote X = X(G) as the set of vertices of G, and E = E(G) as the
set of edges of G. The nodes are connected by arcs or edges adjacent to each
other, giving the structure of graph G; so if E is an empty set, we will have
an empty graphical model, see figure 2.1d. In figure 2.1c, the set of nodes is
{X1, X2, X3, X4} and the set of arcs or edges is {(X1 − X2), (X2 − X3), (X2 →
X4), (X4 → X2)}. But the set of edges or arcs in figure 2.1d is φ.
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X1 X2

X3

X4

(a) A directed graph.

X1 X2

X3

X4

(b) An undirected graph.

X1 X2

X3

X4

(c) A partially directed graph.

X1 X2

X3

X4

(d) An empty graph.

Figure 2.1. – Graphical models.

Each edge or arc can be represented by an ordered or unordered pair of nodes.
For example, if e = (X, Y ) represents the edge between node X and node Y and
e is an ordered pair, then there is a directed arc from node X to node Y ; X → Y .
In this case, the node X is the tail of the arc and the node Y is the head of the
arc. If e = (X, Y ) is an unordered pair, then there is an edge (undirected arc)
between node X and node Y ; X − Y .

There are many properties related to the concept of graph structure, and one
of them is the path.

Definition 2.2.4. [Path, (Koller and Friedman (2009))]. A path in G is a set of
edges that relate two vertices of G. For a pair of vertices, there may exist multiple
paths.

For example, the directed graphs in figure 2.1a has the set of these paths
{(X1, X2), (X1, X2, X4), (X2, X4), (X2, X3)}. In each path of a directed graph, the
arcs follow the same direction and the paths are ordered. In partially directed
graphs, figure 2.1c, the paths may be directed or undirected arcs, e.g, {(X1, X2),
(X2, X1), (X1, X2, X4), (X3, X2, X1), (X2, X3)}. Also, when you consider figure
2.2, you can see that we can reach the node X1 from X4 by a multiple paths
(colored in red), (X4, X1), (X4, X2, X1), and (X4, X5, X1).

Definition 2.2.5. [Cycle or loop path, (Scutari and Denis (2014))]. The paths
(Xi, ..., Xj) in which Xi = Xj are cycles paths.

For example, the path (X2, X4, X2) in figure 2.1c is a cycle path that is forbid-
den in Bayesian networks.

Remark 2.2.1. A path is not necessarily directed.
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Definition 2.2.6. [Ancestors, descendants, (Koller and Friedman (2009))]. If
there is a path from vertex Xi to vertex Xj in a directed graph G, denoted by the
sequence of ordered nodes (Xi, ..., Xj), then Xi is the ancestor of Xj , and Xj is the
descendant of Xi.

Definition 2.2.7. [Parents and child, (Koller and Friedman (2009))]. If there
is an order path (Xi, Xj) in a direct graph represented by a single arc, then Xi is a
parent of Xj and denoted by π(Xi) = {Xj} or Pa(Xi) = {Xj}. Also, Xj is a child
of Xi, and denoted by child(Xj) = {Xi}.

Definition 2.2.8. [Neighbourhood or adjacent, (Koller and Friedman (2009))].
Let Z ∈ X be a vertex of G, the neighbourhood of vertex Z in graph G is defined
by the set of vertices that are directly connected to vertex Z and denoted as follows:

nebr(Z) = {W ∈ X|(Z,W ) ∈ E}. (2.2)

Consider the node X3 in the directed graph, figure 2.1a, X1 is an ancestor
of X3 and X2 is the parent of X3. The neighbourhood of X3 is {X2}. But the
neighbourhood of X2 in same graph is {X1, X3, X4}. Also, in figure 2.2, π(X1) =
{X2, X4, X5} and π(X4) = φ.

Remark 2.2.2. In a directed graphical model, the children are also the descendants,
and the parents are also the ancestors.

Definition 2.2.9. [Acyclic structure]. The structure of a directed graph is
acyclic if it does not have any cycle or loop paths.

Definition 2.2.10. [Roots and leafs, (Koller and Friedman (2009))]. The node
X is a root in graph G if it has at least one outgoing arc and no incoming arcs
(without any parent), and it is a leaf node if it has at least one incoming arc and
no outgoing arcs.

A graph can be uniquely defined by the adjacency matrix or concentration
matrix; two vertices are said to be adjacent if they are directly connected by an
edge.

Definition 2.2.11. [Adjacency matrix]. An adjacency matrix is a square matrix
defining the finite graph in such a way that the elements of the matrix indicate
whether the pairs of vertices are adjacent (connected) in the graph G (denoted by
1) or not adjacent (unconnected) in G (denoted by 0).

That is, if X1, ..., Xp belong to the vertices of graph G =< X,E >, then the
adjacent matrix and denoted by Adj is defined as follows

Adj(i, j) =

1, if (Xi, Xj) ∈ E, i, j = 1, ..., p
0, if (Xi, Xj) 6∈ E, i, j = 1, ..., p

. (2.3)
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Note that Adj(i, j) = 1 means that there is an arc from node j (column index)
towards node i (row index) (see figure 2.2).

Adj(i, j) =

X1 X2 X3 X4 X5 X6



0 1 0 1 1 0 X1

0 0 1 1 0 0 X2

0 0 0 0 0 0 X3

0 0 0 0 0 0 X4

0 0 0 1 0 1 X5

0 0 0 0 0 1 X6

Adjacent matrix of figure 2.2.

X1

X2 X5

X3 X4 X6

Figure 2.2. – Directed graph.

On the other hand, in a undirected graph, we cannot determine the tail and
the head of the arc; i.e, Adj(i, j) = 1 means that there is an edge between node
j and node i and vice versa. In this case, the adjacent matrix is symmetric, as
shown in figure 2.3.

Adj(i, j) =

X1 X2 X3 X4 X5 X6



0 1 0 1 1 0 X1

1 0 1 1 0 0 X2

0 1 0 0 0 0 X3

1 1 0 0 1 0 X4

1 0 0 1 0 1 X5

0 0 0 0 1 1 X6

Adjacent matrix of figure 2.3.

X1

X2 X5

X3 X4 X6

Figure 2.3. – Undirected graph.

Definition 2.2.12. [Complete DAG]. A Complete DAG is a graph that has
edges between each pair of vertices.

2.3. Bayesian Networks
A Bayesian network (Pearl (1988); Jordan (1998)), as mentioned above, is a

probabilistic acyclic graphical model for representing the probabilistic relation-
ships between several random variables.

Definition 2.3.1. [Bayesian networks (BN)]. A Bayesian network (BN) is a
directed acyclic graph (DAG) that encodes a joint probability distribution over a set
of random variables X = (X1, ..., Xp) and represents the probabilistic dependencies
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between a given set of random variables denoted by BN = < G,Θ >, where G
is the graph structure of the set of nodes X and represents the independencies
relations between the variables, and Θ is the set of parameters that represents the
amounts of the conditional independencies.

The keys behind Bayesian networks are factorisation, notational, and visu-
alisation. That is, respectively, the factorisation of the probability distribution
and using the graphical representation to visualise the conditional independence
properties of the probability distribution.

Let us think graphically. If X, Y , and Z are random variables, consider their
joint distribution P (x, y, z). This joint distribution can be factorised as follows:

P (x, y, z) = P (z|x, y)P (x, y) = P (z|x, y)P (y|x)P (x). (2.4)

So if the P (x, y) = 0, then the joint probability distribution P (x, y, z) = 0 even
when we do not know the P (z|x, y). Equation 2.4 can be represented graphically
by figure 2.4c by starting from an empty graph represented by nodes without
links as in figure 2.4a, then y|x means that there is an arc from node Y to node
X, see figure 2.4b, i.e., Y is a parent of X, also z|x, y means that there are two
arcs from node Z to nodes X and Y, see figure 2.4c, i.e., Z has two parents, X
and Y. Additionally, X here is a root.

But let us assume that Y ⊥⊥ Z|X, then

P (Z|X, Y ) = P (Z|X). (2.5)

In this case, the red arc from Y to Z in figure 2.4c will be removed.

Definition 2.3.2. If X = (X1, ..., Xp) is a vector of random variables and has a
probability density function P (X) and G is a DAG on p vertices, then we say X
respects G (or P (X) respects G) if

P (X1, ..., Xp) =
p∏
j=1

P (Xj|π(Xj)). (2.6)

This does not imply that all random variables are conditionally dependent,
but some variables are conditionally independent. That is, if we have a set X of
three mutual independent variables X = {X1, X2, X3}, then the joint probability
distribution P over X is equal to

P (X1, X2, X3) = P (X1)P (X2)P (X3). (2.7)

In this case, we say that the joint probability distribution P respects the DAG G,
as given in figure 2.4a.
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X

Z Y

(a) Step one: Empty graph.

X

Z Y

(b) Step two.

X

Z Y

(c) Step three.

Figure 2.4. – Graphical models.

2.3.1. Generative process specification for probability
distribution

This is a convention for specifying the probability distribution in a compact
way, as certain conditional independence properties are omitted from the specifi-
cation when we use this convention, and those conditional properties are implic-
itly implied (Bielza and Larrañaga (2014); Mitchell (1990)). For clarity, let X1,
X2, X3, X4 and X5 be random variables with the following particular generative
distribution:

X1, X2 ∼ Ber(1
2), X1 and X2 are independent (2.8)

X3 ∼ N (X1 +X2, σ
2) (2.9)

X4 ∼ N (aX2 + b, 1) (2.10)

X5 =

1, if X4 ≥ 0
0, otherwise

, (2.11)

where the symbol N denotes the normal distribution. The convention is when
we say that X1, X2, X3, X4 and X5 have the probability distribution mentioned
above, and the joint distribution of X = (X1, X2, X3, X4, X5) respects the graph
shown in figure 2.5, that is

P (X1, X2, X3, X4, X5) = P (X1)P (X2)P (X3|X1, X2)P (X4|X2)P (X5|X4) (2.12)

Note that X1 and X2 are independent from equation 2.8, so there are no ar-
rows between them and X3 depends uniquely on X1 and X2 from equation 2.9;
also, X4 depends on X2 from equation 2.10 and X5 depends on X4 from equa-
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X1

X3

X2

X4

X5

Figure 2.5. – The joint distribution of X = (X1, X2, X3, X4, X5) represented by
equations 2.8 - 2.11.

tion 2.11. Since X = (X1, X2, X3, X4, X5) respects the graph 2.5, this means that
graph 2.5 has certain conditional independent properties and these conditional
independencies are not necessarily mentioned in equations 2.8 - 2.11. For ex-
ample, in this graph, X3 and X4 are conditionally independent given X2, which
is not mentioned in equations 2.8 - 2.11. This is, what visualisation means is
to visualise the joint probability distribution to discover the conditional indepen-
dencies properties using a graphical model. The concept of generative process is
useful for sampling from the joint probability distribution taking into considera-
tion the properties of conditional independencies.

2.4. Conditional independence in a directed
graphical model

The unique reason for using a graphical model is to express the conditional
dependencies properties of the probability distribution. In section 2.4.1, we will
talk about the d-separation criterion that obtains these conditional properties
from the graphical model. Accordingly, we will show the relationship properties
between variables through simple graphs.

1. Tail to tail relationships: A tail to tail relationship means that the arrows
radiate from the node we are conditioning on, see figure 2.6a, where we
condition on the node Z. Let X, Y , and Z be random variables, and the
distribution of these three variables respect the graph in figure 2.6a; this
means that the joint probability of X, Y , and Z factorises as

P (X, Y, Z) = P (Z)P (X|Z)P (Y |Z). (2.13)

Now let us condition on Z,, i.e., what is the probability of X and Y , given
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(known) Z? by Bayes rule

P (X, Y |Z) = P (X, Y, Z)
P (Z) , P (Z) > 0 (2.14)

= P (Z)P (X|Z)P (Y |Z)
P (Z) by equation 2.13

= P (X|Z)P (Y |Z).

That is, if Z is known then, X ⊥⊥ Y |Z. Other wise, X and Y are dependent.

2. Head to tail: A head to tail relationship means that one arrow is going out
from the node we are conditioning on, and the other is coming towards
it. As above, let X, Y , and Z be random variables, and the distribution
of these three variables respect the graph 2.6b; this means that the joint
probability of X, Y , and Z factorises as

P (X, Y, Z) = P (X)P (Z|X)P (Y |Z). (2.15)

Conditioning on Z, the probability of X and Y given Z, by Bayes rule

P (X, Y |Z) = P (X, Y, Z)
P (Z) , P (Z) > 0 (2.16)

= P (X)P (Z|X)P (Y |Z)
P (Z) , by equation 2.15

= P (X,Z)P (Y |Z)
P (Z) , since P (X)P (Z|X) = P (X,Z)

= P (X|Z)P (Z)P (Y |Z)
P (Z) , since P (X,Z) = P (X|Z)P (Z), by Bayes rule

= P (X|Z)P (Y |Z).

Similarly, if Z is known then, X ⊥⊥ Y |Z. Otherwise, X and Y are depen-
dent.

3. Head to head relationship: A head to head relationship mean that the two
arrows are coming towards the node we are conditioning on. As above,
let X, Y and Z be random variables and the distribution of these three
variables respect the graph in figure 2.6c, thus the joint probability of X, Y ,
and Z factorises as

P (X, Y, Z) = P (X)P (Y )P (Z|X, Y ). (2.17)

Also, in the same way, conditioning on Z, the probability of X and Y are
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given Z by Bayes rule

P (X, Y |Z) = P (X, Y, Z)
P (Z) , P (Z) > 0 (2.18)

= P (X)P (Y )P (Z|X, Y )
P (Z) , by equation 2.17

6= P (X|Z)P (Y |Z). (2.19)

Equation 2.19 does not hold in general. In this case, if X and Y are inde-
pendent, then X is marginally independent (not conditionally) of Y and
denoted by X ⊥⊥ Y .

Z

YX

(a) Tail to tail.

Z

YX

(b) Head to tail.

Z

YX

(c) Head to head.

Figure 2.6. – Conditional independencies relationships based on node X.

Type 1 relationships (tail to tail), figure 2.6a, and type 2 relationships (head
to tail), figure 2.6b, represent the same dependencies; i.e, X and Y are indepen-
dent given Z. Type 3 relationships (head to head), figure 2.6c, can be uniquely
identified, as X and Y are marginally independent, and in this case the structure,
it is known as a v-structure.

Remark 2.4.1. [Equivalence class]. The factorisation equation of the joint proba-
bility distributions for graphs 2.6a and 2.6b and given by equations 2.13 and 2.15
can be formulated to equivalent equations using Bayes theorem, such cases are
known as Markov equivalent structures, and each set of equivalent structures
forms an equivalence class.

2.4.1. d-separation criterion
d-separation criterion (Pearl (1988)) is an abbreviation for a directed separation,

and as mentioned above in section 2.4, the d-separation criterion allows us
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to read the conditional properties from the graphical models for a probability
distribution. Thus, using the d-separation criterion, we can determine whether
two sets of random variables are conditionally independent or not given a third
set. The d-separation properties are a wide generalisation of the relationships
mentioned in section 2.4.

The concept of d-separation is related to an important definition: the path and
the blocked path. We already defined the concept of path in definition 2.2.4,
thus the definition of blocked path remains.

Definition 2.4.1. [Blocked path].
A path between two vertices in graph G =< X,E > is blocked with respect to

a subset Z ⊆ X if it passes through vertex W ∈ X such that either one of two
properties hold the following:

1. The arrow is tail to tail or head to tail and W ∈ Z.
2. The arrow is head to head and W 6∈ Z, and none of the descendants of W

belong to Z.

After illustrating these concepts, we can define the d-separation concept as
follows:

Definition 2.4.2. [d-separation]. If X,Y, and Z are three disjoint subsets of
vertices in a DAG G, then X and Y are d-separated by Z, if all the paths from a
vertex in X to a vertex in Y are blocked with respect to Z.

Based on the d-separation definition, we can obtain the concept of condi-
tional independencies relations from the probabilistic graphical models (PGMs)
in the following theorem:

Theorem 2.4.1. [Conditional independence in PGMs].
Let G be a PGM and X,Y, and Z be three disjoint subsets of vertices in a DAG

G, if X and Y are d-separated by Z, then X is conditionally independent of Y
given Z and denoted by X ⊥⊥ Y|Z.

2.5. Markov Property
Recall that for any sequence of random variablesX1, X2, ..., Xp, ..., it is a Marko-

vian chain if it holds for any p ∈ N

P (Xp+1|X1, ..., Xp) = P (Xp+1|Xp), (2.20)

That is, Xp+1 is conditionally independent of X1, X2, ..., Xp−1, given Xp and writ-
ten symbolically
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Xp+1 ⊥⊥ (X1, ..., Xp−1)|Xp, (2.21)

or

Xp+1 ⊥⊥P (X1, ..., Xp−1)|Xp (2.22)

if the relation related to a given probability distribution P (figure 2.7).

X1 X2 X3 Xp Xp+1 ...

Figure 2.7. – Markovian chain representation.

The Markovian property (Korb and Nicholson (2010)) allows us to factorise
the joint probability distribution over the set of variables X = (X1, ..., Xp) as
follows:

P (X1, ..., Xp) = P (Xp|X1, ..., Xp−1)P (X1, ..., Xp−1) by Bayes rule (2.23)
= P (Xp|Xp−1)P (Xp−1|X1, ..., Xp−2)P (X1, ..., Xp−2) by Eq. 2.20
= P (Xp|Xp−1)P (Xp−1|Xp−2)P (X1, ..., Xp−2). (2.24)

If we continue the procedure for another p − 1 iteration in equation 2.24, we
obtain

P (X1, ..., Xp) = P (X1)P (X2|X1)P (X3|X2)...P (Xp−1|Xp−2)P (Xp|Xp−1). (2.25)

The idea behind Markovian property is that the future is independent of the
past, given the present. In static Bayesian networks, the data is not temporal
(related to time); so the present here refers to the parents nodes; the future
refers to the descendants nodes, and the past refers to the nondescendant nodes,
i.e, each variable Xi is independent of its nondescendants given its parents in
G. In chapter four and five, we will talk about Bayesian networks for temporal
data known as dynamic Bayesian networks, (DBN), (Friedman et al. (1998)).

The Markovian properties on the Bayesian networks follows directly from the
concept of d-separation and allows us to represent the joint probability distribu-
tion of the set of variables X = (X1, ..., Xp) as the product of local conditional
probability distributions. The Bayesian networks BN =< G,Θ > defining a
unique joint probability distribution over X is given by
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PBN(X1, ..., Xp) =

p∏
j=1

P (Xj|π(Xj)) =
p∏
j=1

θXj |π(Xj), for discrete data.

fBN(X1, ..., Xp) =
p∏
j=1

f(Xj|π(Xj)) =
p∏
j=1

θXj |π(Xj), for continuous data.

(2.26)

where π(Xj) is the parents set of Xj, and Θ = {θXj |π(Xj)} is the set of parameters
qualifying the network.

Definition 2.5.1. [Markov blanket, (Pearl (1988))]. The Markov blanket of
a node X in a Bayesian network is the set of nodes composed of X’s parents, its
children, and the children’s other parents.

2.6. Learning Bayesian networks
Learning Bayesian networks model (Heckerman et al. (1995); Lam and Bac-

chus (1994); Geiger and Heckerman (1996); Koller and Friedman (2009); Korb
and Nicholson (2010); Cooper and Herskovits (1992)) goes through two proce-
dures: learning structure and learning parameter. In learning structure, we
are looking for the structure that gives the most accurate picture of the joint
probability distribution over the set of random variables X. Several methods
are proposed for searching the best structure if it is unknown. Learning pa-
rameters refer to computing the conditional probabilities based on the struc-
ture given by the first step. More obviously, as we have discussed, a graphi-
cal model can be used to answer probabilistic inference queries by finding the
closest underlying joint probability distribution for the training sample data,
D = {(yi, xi1), (yi, xi2), ..., (yi, xip)}, i = 1, ..., n. Additionally, we may want to
solve a simple classification task and answer queries in the form P (Y |X) for any
new instance x using maximum a posterior probability (MAP) to perform the
predictions, where Y is the discrete or factor variable.

2.6.1. Learning parameters
In this section, we will assume that the structure is known, and the data is

complete; that is, there are no missing values or latent variables. There are two
main approaches for learning parameters in Bayesian networks: learning pa-
rameters using maximum likelihood estimation (MLE) and learning parameters
using Bayesian estimation.

43



2.6.1.1. Maximum Likelihood Estimation (MLE)

Estimating parameters in Bayesian networks is to find the conditional proba-
bilities θj = P (Xj|π(Xj)) that qualifies these networks for each possible values
of Xj and π(Xj). In Bayesian networks, estimating parameters using maximum
likelihood estimation MLE is finding the parameter θ such that

L(θ̂; X) = max
θ∈Θ

L(θ; X). (2.27)

In next sections, we will study estimating the parameters in Bayesian networks
for discrete and continuous data.

2.6.1.2. MLE for discrete Bayesian networks

Let X = (X1, ..., Xp) be a discrete random vector; we specify the joint probabil-
ity distribution over these variables to be a multinomial distribution, assigning
a probability to each combination of levels of the variables. In the context of
Bayesian networks, this joint distribution is called the global distribution. Using
the global distribution directly is difficult because the number of its parameters
is very high. But, we can use the information encoded in the DAG to divide the
global distribution into a set of smaller local distributions, one for each variable.
Recall that arcs represent direct dependencies; variables that are not linked by
an arc are conditionally independent. Each variable depends only on its parents;
its distribution is univariate and has a small number of parameters. Even the
set of all the local distributions has, overall, fewer parameters than the global
distribution (Scutari and Denis (2014); Koller and Friedman (2009); Neapolitan
(2003)).

If X has (∼), the multinomial distribution is as follows:

X ∼ multinomial(n, θj), j = 1, ..., p. (2.28)

Then the maximum likelihood estimation aims to maximise the likelihood (or
log-likelihood) function over X, which is

f(X) = P (X = x,Θ) = n!
x1!x2!...xp!

θx1
1 θ

x2
2 ...θ

xp
p , (2.29)

where xj = {0, 1, 2, ..., n} is the number of successes of the pth outcome in n

trails;
p∑
j=1

xj = n, θj is the probability of success of the pth outcome,
p∑
j=1

θj = 1,

and θj ∈ [0, 1].
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Consider figure 2.8, the joint probability distribution of the graph is given by

P (X1, X2, X3, X4, X5) = P (X1)︸ ︷︷ ︸
θ1

P (X2|X1)︸ ︷︷ ︸
θ2

P (X3)︸ ︷︷ ︸
θ3

P (X4|X1, X3)︸ ︷︷ ︸
θ4

P (X5)︸ ︷︷ ︸
θ5

(2.30)

To find the parameters estimation θj = P (Xj|π(Xj)) using MLE between two
nodes in Bayesian networks, there are two cases: when π(Xj) = φ, that is when
there are no incoming arcs coming towards Xj, as you can see in the above
equation. Finding the MLE for θ1 = P (X1), θ3 = P (X3), and θ5 = P (X5) is carried
out using MLE for their joint probability distribution, which is multinomial for
each one (Case one). In case two, we will find the MLE for the variables when
they have parents; for example θ2 = P (X2|X1) and θ4 = P (X4|X1, X3).

X3 X4

X2 X1X5

Figure 2.8. – Bayesian network example.

Case one: (MLE for P (Xj|π(Xj)), when π(Xj) = φ ).
In this case, we will find the MLE of each variable Xj separately. As Xj is
a discrete variable, and it may take values from a finite set Xj = {1, ..., J}
and J ∈ N, we assume X = (X1, ..., Xp) has multinomial distribution

f(x1, ..., xp, θ1, ..., θk) = n!
x1!, ...xp!

θx1
1 ...θ

xp
p (2.31)

= C(x)
p∏
j=1

θ
xj

j , where C(x) = n!
x1!, ...xp!

. (2.32)

Then, the multinomial likelihood function for n samples is given by

L(θ1, ..., θp) = C(x)
p∏
j=1

θ
xj

j (2.33)

and the log-likelihood function is given by

`(θ1, ..., θp) = logL(θ1, ..., θp),

= logC(x) +
p∑
j=1

xj log θj (2.34)
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Now, since
p∑
j=1

xj = n and
p∑
j=1

θj = 1, therefore xp = n −
p−1∑
j=1

xj and θp =

1−
p−1∑
j=1

θj. So that, we have

`(θ1, ..., θp−1) = logL(θ1, ..., θp−1)

= x1 log θ1 + ...+ xj log θj + ....+ xp−1 log θp−1 + xp log(1−
p−1∑
j=1

θj).

(2.35)

The differentiation of multinomial log-likelihood equations are

∂`(θ1, ..., θp−1)
∂θj

= xj
θj
− xp
θp

= 0, j = 1, ..., p− 1.

Hence, the MLE of θ1, ..., θp−1 satisfies the equation

x1

θ̂1
= xp

θ̂p
,
x2

θ̂2
= xp

θ̂p
, ...,

xp−1

θ̂p−1
= xp

θ̂p
.

This is equivalent to

x1

xp
= θ̂1

θ̂p
,
x2

xp
= θ̂2

θ̂p
, ...,

xp−1

xp
= θ̂p−1

θ̂p
. (2.36)

Using

p∑
j=1

θ̂j = 1 =
p∑
j=1

xj
xp
θ̂p = θ̂p

xp

p∑
j=1

xj = nθ̂p
xp

. (2.37)

Hence, the MLE of θ1, ..., θp is given by

θ̂1 = x1

n
, ..., θ̂p = xp

n
. (2.38)

For clarity, if the random variable X1 = (x1, ..., xn) ∼ multinomial(n, θ1),
then the MLE for θ1 is

θ̂1 = x1

n
= Count(X1 = x1)

sample size
. (2.39)

Case Two: (MLE for P (Xj|π(Xj)), where π(Xj) 6= φ).
In this case, we want to find the estimation of P (Xj|π(Xj)). The log-
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likelihood function for joint probability distribution of the graph G is

`(Θ) = log
n∏
i=1

p∏
j=1

P (Xj = xij|π(Xj) = πij) (2.40)

=
n∑
i=1

p∑
j=1

logP (Xj = xij|π(Xj) = πij). (2.41)

We can separate this problem into n sub-tasks to maximise

Li =
p∑
j=1

P (Xj = xij|π(Xj) = πij), i = 1, ..., n. (2.42)

Now, group the terms that have the same outcomes of Xj, and let x be all
the possible values of Xj, and πππ be the set of all possible values of parents
of Xj; also, let Count(x,πππ) be the number of examples xij ∈ x and πij ∈ πππ.
Note that

n =
∑
x

∑
πππ

Count(xij, πij) (2.43)

and we can write

Mi =
∑
x

∑
πππ

logP (Xj = xij|π(Xj) = πij), xij ∈ x, πij ∈ πππ. (2.44)

Note that
∑
x
P (Xj = xij|π(Xj)) = 1, so our problem becomes maximised

∑
x
Cx logwx (2.45)

subject to

wx ≥ 0 and
∑
x
wx = 1, (2.46)

where Cx = Count(x,πππ) and wx = P (Xj = xij|π(Xj) = πij).
This problem can be solved using Lagrange multipliers by differentiating
this equation with respect to wx

Mi =
∑
x
Cx logwx + λ(1−

∑
x
wx), λ ∈ [0, 1]. (2.47)

The solution will be

wx = Cx∑
x
Cx

, (2.48)
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i.e.

P (Xj = xij|π(Xj) = πij) = Count(Xj = xij, π(Xj) = πij)∑
x
Count(Xj = xij, π(Xj) = πij)

(2.49)

= Count(Xj = xij, π(Xj) = πij)
Count(π(Xj) = πij)

. (2.50)

For more details regarding cases one and two in a discrete case, see (Koller
and Friedman (2009); Johnson and Wichern (2007); Santafé (2010)).

2.6.1.3. Learning parameters of Gaussian Bayesian networks

To specify completely the joint probability distribution of the continuous vari-
ables in the Bayesian network, the multivariate normal distributions are con-
sidered in this dissertation. If we are modelling p variables, we must specify p
means (µ), p variances (σ2) and 1

2p(p − 1) correlation coefficients. Furthermore,
the correlation coefficients must be such that the resulting correlation matrix is
non-negative definite. But, in the context of BNs, we only need to specify the
local distribution of each node conditional on the values of its parents, without
worrying about the positive definiteness of the correlation matrix of the global
distribution (Scutari and Denis (2014)).

Let us consider that a single random variable X has univariate normal distri-
bution such that

X = (x1, ..., xn) ∼ N (µ, σ2), xi ∈ R,−∞ < µ <∞, 0 < σ2 <∞. (2.51)

The variable X in this case has two parameters that must be estimated: µ and
σ2.

The likelihood function over X is given by

L(µ, σ2) = f((x1, ...., xn);µ, σ2) = (2π)−n
2 σ−2n exp−

n∑
i=1

(xi − µ)2

σ2

, and the log-likelihood function

`(µ, σ2) = logL(µ, σ2)

= −n2 log 2π − n log σ2 − 1√
2πσ2

−

n∑
i=1

(xi − µ)2

σ2 (2.52)

Now, differentiate equation 2.52 with respect to µ and then with respect to σ2
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and by equating the derivatives to zero, we get

µ̂ =

n∑
i=1

xi

n
= x̄ and σ̂2 =

n∑
i=1

(xi − µ̂)2

n
.

In our example regarding figure 2.8, if the distribution of G is

f(X1, X2, X3, X4, X5) = f(X1)︸ ︷︷ ︸
θ1

f(X2|X1)︸ ︷︷ ︸
θ2

f(X3)︸ ︷︷ ︸
θ3

f(X4|X1, X3)︸ ︷︷ ︸
θ4

f(X5)︸ ︷︷ ︸
θ5

, (2.53)

the parameters estimation for the first, third, and fifth terms are as in the previ-
ous example for a single random variable. But for the second and fourth terms,
we need to know the distribution of X2|X1 and X4|(X1, X3).

For example, consider finding the parameters estimation for the local distribu-
tion of X1 and X2 in figure 2.8 with a probability density distribution f(X2|X1).
The joint probability function for X1 and X2 is bivariate normal, i.e,

X1 ∼ N (µ1, σ
2
11), (2.54)

X2 ∼ N (µ2, σ
2
22). (2.55)

Thus,

f(x1, x2) = 1
2π
√
σ2

11σ
2
22(1− ρ2

12)

× exp{− 1
2(1− ρ2

12)

(
x1 − µ1

σ2
11

)2

+
(
x2 − µ2

σ2
22

)2

(2.56)

− 2ρ12

(
x1 − µ1

σ2
11

)2 (
x2 − µ2

σ2
22

)2

},

or in another form

f(x1, x2) = 1
2π|Σ|1/2 e

−(x−µ)Σ−1(x−µ)/2 (2.57)

,
where

Σ =
[
σ2

11 σ2
12

σ2
21 σ2

22

]
, Σ−1 = 1

σ2
11σ

2
22 − σ4

12

[
σ2

22 −σ2
12

−σ2
12 σ2

11

]
, µ =

[
µ1 = E(X1)
µ2 = E(X2)

]
, (2.58)

such that the correlation between the two variables is Corr(X1, X2) = ρ12 =
σ12/(σ11σ22); the means are µ1 = E(X1), µ2 = E(X2); the variances are σ2

11 =
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var(X1), σ2
22 = var(X2), and the covariance is Cov(X1, X2) = σ12. But the

conditional distribution of X1|X2 is

f(x2|x1) = f(x1, x2)
f(x1) , (2.59)

where f(x1, x2) is the bivariate normal density, and f(x1) is the marginal distribu-
tion of X1, which is a univariate normal distribution. Dividing the joint density
of X1 and X2, as shown in equation 2.56, by the marginal density of X1 and
eliminating the terms give the conditional density

f(x2|x1) = f(x1, x2)
f(x1)

= 1
2πσ2

22(1− ρ12)e
−[x2−µ2−(σ12/σ2

11)(x1−µ1)]2/2σ2
22(1−ρ2

12). (2.60)

−∞ < x2 <∞
Thus, the distribution of the local graph X1 → X2 is

X2|X1 ∼ N (µ2 + σ12

σ2
11

(X1 − µ1), σ2
22(1− ρ2

12)). (2.61)

The estimation of the population mean is the sample mean X̄, and the estimation
of the population variance is the sample variance S; so learning parameters of
the local graph X2 → X1 is given by

µ̂X2|X1 = X̄2 + S12

S2
11

(X1 − X̄1) and σ̂2
X2|X1 = S2

22(1− ρ̂2
12), where, ρ12 = σ12

σ11σ22
.

(2.62)

Note that Σ22 − Σ12Σ−1
11 Σ12= σ2

22 − σ12/σ
2
11 and Σ12Σ−1

11 = σ12/σ
2
11, thus you can

rewrite equation 2.62 as

X2|X1 ∼ N (µ2 + Σ12Σ−1
11 (x1 − µ1),Σ2

22(1− ρ2
12)) (2.63)

. Moreover, note from equation 2.62

µ̂X2|X1 = X̄2 + S12

S2
11

(X1 − X̄1)

= X̄2 −
S12

S2
11
X̄1︸ ︷︷ ︸

a0

+ S12

S2
11︸︷︷︸
a1

X1

= a0 + a1X1, (2.64)

we get the linear regression equation of fitting X2 over X1, where a0, a1 are the
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regression coefficients.
In general, the p-dimensional normal density Np(µ,Σ) has the form

f(x1, ..., xp) = 1
(2π)p/2|Σ|1/2 e

−(x−µ)Σ−1(x−µ)/2 (2.65)

, where −∞ < xj < ∞, j = 1, ..., p, and this is also called multivariate nor-
mal density. In this case, all the conditional distributions have multivariate
normal distributions. Thus, for a random vector X = (X1, ..., Xp) and subset
Z of X, the conditional distribution of Xj|Z = (Z1, ..., Zk)\{Xj} is a Gaussian
distribution given by

Xi|Z = z ∼ N (µX + (z − µZ)Aj, σXX − ΣT
ZXΣ−1

ZZΣZX), (2.66)

with a conditional mean

µX + (z − µZ)Aj, where Aj = Σ−1
ZZΣZX , (2.67)

and a conditional covariance

Σ = σXX − ΣT
ZXΣ−1

ZZΣZX , (2.68)

which does not depend upon the value(s) of the conditioning variable(s), i.e, if
X is a variable and has k parents Z = {Z1, ..., Zk} as in figure 2.9.

X

Z2Z1 ...... Zk−1 Zk

Figure 2.9. – k parents for node X.

The joint distribution that represents the local graph 2.9 is given by

f(X,Z1, .., Zk) = f(X|Z1, .., Zk−1, Zk), (2.69)

where

X|Z1, .., Zk−1, Zk ∼ N (a0 + a1Z1 + ...+ akZk, σXX − ΣT
ZXΣ−1

ZZΣZX) (2.70)
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i.e. the parameters estimation are

µ̂ = â0 + â1Z1 + ...+ âkZk, (2.71)
Σ̂ = σXX − ΣT

ZXΣ−1
ZZΣZX , (2.72)

where the a’s can be computed by fitting the linear regression of X over Z =
(Z1, ..., Zk) and given by this equation

Â = (ZTZ)−1ZTX (2.73)

For this section, see (Johnson and Wichern (2007)) for more details.

2.6.1.4. Problems related to the MLE

In the previous sections, we discussed the point estimation method, namely
MLE, that characterises the population under consideration as fixed unknown
constants. This approach is called classical approach to the problem of statis-
tical inference or frequentist inference. The likelihood equations need to be
calculated for a given distribution and estimation problem. The mathematics is
often non-trivial. Also, assume that a coin is tossed 10 times and comes out tails
10 times. The estimated probability of heads equals zero, although based on
our prior knowledge, the probability of head is equal to 1

2 . That is why Bayesian
estimation is introduced here. (Johnson and Wichern (2007); Friedman et al.
(1997); Korb and Nicholson (2010)).

2.6.1.5. Bayesian estimation

In this approach, we encode our prior knowledge about θ with a probability
distribution called prior distribution and is denoted by P (θ); this distribution rep-
resents how we are a priori likely to believe the different choices of parameters.
Once we quantify our knowledge (or lack thereof) about the possible values of θ,
we can create a joint distribution over the parameters θ and the data cases that
we are about to observe. This joint distribution captures our assumptions about
the experiment (Koller and Friedman (2009)).

The network structure implies that the joint distribution of a particular data
set and θ factorise as

P (X; θ) = P (X1, ..., Xp|θ)P (θ) (2.74)

Note that the term P (X1, ..., Xp|θ) is the likelihood function L(θ; X). The network
specifies a joint probability model over parameters and data. There are several
ways in which we can use this network. Most obviously, we can take an observed
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data set and use it to instantiate the values of x1, ..., xn; we can then compute
the posterior distribution over θ

P (θ|x1, ..., xn) = P (x1, ..., xn|θ)P (θ)
P (x1, ..., xn) . (2.75)

In this posterior, the first term in the numerator is the likelihood; the second is
the prior over parameters, and the denominator is a normalizing factor. We
see that the posterior is (proportional to) a product of the likelihood and the
prior

P (θ|X) ∝ P (X|θ)P (θ) = C∗P (X|θ)P (θ), (2.76)

where C∗ is a normalised factor so that it will be a proper density function.
For example, let X|Θ = θ ∼ Ber(θ) and θ ∼ Beta(α, β), then the probability

density function of X|Θ = θ is given by

P (X = x|θ) = θx(1− θ)1−x (2.77)

where θ ∈ (0, 1). Note that E(X|θ) = θ, x ∈ {1, ..., J}, and var(X|θ) = θ(1 − θ).
The probability density function Θ = θ is given by

P (θ) = θα−1(1− θ)β−1

Beta(α, β) , where Beta(α, β) = ΓαΓβ
Γ(α + β) (2.78)

θ ∈ (0, 1) and α, β > 0 with E(θ) = α
α+β and var(θ) = αβ

(α+β)2(α+β+1) . Then the
joint probability density function of X and Θ = θ is

P (x, θ) = P (θ)P (x|θ) = θα−1(1− θ)β−1

Beta(α, β) × θx(1− θ)1−x

= θα+x−1(1− θ)β+(1−x)−1

Beta(α, β) . (2.79)

Since Θ is a continuous random variable, the marginal or predictive probability
density of X is

P (X) =
∫
Θ

P (x, θ)dθ =
∫
Θ

P (θ)f(x|θ)dθ

=
∫ 1

0

θα+x−1(1− θ)β+(1−x)−1

Beta(α, β) dθ (2.80)
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by multiplying and dividing by Γα∗Γβ∗
Γ(α∗+β∗) , we get

P (X) = Γα∗Γβ∗Γ(α + β)
Γ(α∗ + β∗)ΓαΓβ = Beta(α∗, β∗)

Beta(α, β) (2.81)

,
where Beta(α∗, β∗) = Γα∗Γβ∗

Γ(α∗+β∗) .
Thus, the posterior probability distribution is given by

P (θ|X) = P (X, θ)
P (X) = P (θ)f(X|θ)∫

Θ
f(x|θ)dθ

= Beta(α∗ = α + x, β∗ = β + (1− x)). (2.82)

This is a beta distribution with hyper parameters α∗ = α+x and β∗ = β+(1−x).
This result presents a property of the Beta distribution: If the prior is a Beta dis-

tribution, then the posterior distribution (the prior conditioned on the evidence)
is also a Beta distribution. In this case, we say that the Beta conjugate prior
distribution (definition 2.6.1) is conjugate to the Bernoulli likelihood function.

Definition 2.6.1. [Conjugate prior].
A family of priors P (θ : α) is conjugate to a particular model P (ζ|θ) if for any
possible data set D of Independent and Identically Distributed (IID) samples from
P (ζ|θ), and any choice of legal hyper-parameters α for the prior over θ, there are
hyper-parameters α∗ that describe the posterior. That is,

P (θ : α∗) ∝ P (D|θ)P (θ : α). (2.83)

The main philosophical difference between the Bayesian approach and MLE
approach is in the use of the posterior. Instead of selecting from the posterior a
single value for the parameter θ, we use it, in its entirety, for predicting the prob-
ability over a new instance. An immediate consequence is that we can compute
the probabilities over the new instance xn+1 from the above example by

P (xn+1|x1, ..., xn) =
∫
P (xn+1|x1, ..., xn, θ)P (θ|x1, ..., xn)dθ

=
∫
P (xn+1|θ)P (θ|x1, ..., xn)dθ

= EP (θ|X)(xn+1|θ)

= α∗

α∗ + β∗
. (2.84)

where, in the second step, we use the fact that the instances are independent
given θ, α∗ = α+ xn+1 and β∗ = β + (1− xn+1). This prediction in equation 2.84,
called the Bayesian estimator, is quite similar to the MLE prediction except that
it adds one “imaginary” sample to each count. Clearly, as the number of samples
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grows, the Bayesian estimator and the MLE estimator converge to the same value
(Koller and Friedman (2009)).

Definition 2.6.2. [Bayes estimate] Suppose we have observations over previous
instances from D, and suppose that we are about to sample a new instance xnew,
then the Bayesian estimator is the posterior distribution over a new example:

P (xnew|D) =
∫
P (xnew|D, θ)P (θ|D)dθ

=
∫
P (xnew|θ)P (θ|D)dθ

= EP (θ|X)(xnew|θ). (2.85)

Thus, our prediction is the average overall parameters according to the poste-
rior.

In discrete Bayesian networks, let training data D = {X1, ..., Xp} come from
multinomial distribution

X1, ..., Xp|θ ∼ multinomial(n; θ1, ..., θp) (2.86)

then

P (X1 = x1, ..., Xp = xp|θ1, ..., θp) = Γ (n+ 1)
p∏
j=1

Γ (xj + 1)

p∏
j=1

θ
xj

j (2.87)

, where
p∑
j=1

θj = 1 and
p∑
j=1

xj = n. Based on definition 2.6.1, since the posterior is

proportional to the prior multiplied by the likelihood, it is suitable to choose the
prior from the same family of likelihood. Dirichlet distribution generalises the
beta distribution. A Dirichlet distribution with parameters α1, ..., αp and denoted
by Drich(α1, ..., αp) is given by

P (θ) = f(θ1, ..., θp;α1, ..., αp) =
Γ
(

p∑
j=1

αj

)
p∏
j=1

Γ(αj)

p∏
j=1

θ
αj−1
j = 1

Beta(α)

p∏
j=1

θ
αj−1
j (2.88)

, where
p∑
j=1

θj = 1, Beta(α) =

p∏
j=1

Γ(αj)

Γ
(

p∑
j=1

αj

) , such that, α = (α1, ..., αp), and E(Θ =

θj) = αj
p∑

j=1
αj

.

The posterior distribution then is
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f(θ|D) ∝ f(θ,D)
= f(θ1, ..., θp)f(x1, ..., xp|θ1, ..., θp)

∝
p∏
j=1

θ
αj−1
j

∏
xj∈D

p∏
j=1

θ
xj

j

=
p∏
j=1

θ

αj+
∑

xj∈D
xj−1

j (2.89)

which is the density Dirichlet distribution with hyper-parameters

α∗j = αj +
∑
xj∈D

xj.

That is, f(θ|D) = Drich(α∗1, ..., α∗p).
Thus, the learning parameters in Bayesian networks, denoted by P (Xj =

xj|π(Xj)) are given by

P (Xj = xj|π(Xj)) =
∫ p

0
P (Xj = xj|θj)P (θj|π(Xj))dθj

=
∫ p

0
θjP (θj|π(Xj))dθj

= E(θj|π(Xj))

= αj + xj
p∑
j=1

(αj + xj)

= αj + xj
p∑
j=1

(αj) + n
. (2.90)

Remark 2.6.1. Maximum a posteriori estimation (MAP) selects the parameter
configuration for a Bayesian network model, Θ̂ , that maximises the posterior
probability of the parameters

Θ̂ = argmax
Θ

P (Θ|D) (2.91)

For more details about Bayesian estimation, see (Hogg (1978); Koller and
Friedman (2009); Neapolitan (2003)).
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2.6.2. Learning Structure
The main goal of a learning network structure is to perform the density esti-

mation that is a queired from the instances that were not in our training data.
An additional reason for a learning network structure is to discover the depen-
dencies in the learned network. The space of a DAG increases exponentially
as the number of variables increases (2p). Also, in space Rp where p > 1 or
finite space learning structures become more difficult. Many approaches are pro-
posed to build the pattern of Bayesian networks. The networks will represent the
causal relations between the variables, and we can then study the conditional in-
dependencies relations based on that. Learning structure can be divided into
two approaches: conditional independencies-based approach to detect the
conditional independencies to search for the Markov blanket for each node and
networks score-based approach to search for the network that has the maxi-
mum score depending on a special scores measure. The Bayesian network score
gives each structure a score and searches for the best structure from the range
of all possible structures for the Bayesian network. Identifying the highest score
of the Bayesian networks requires optimisation methods, such as greedy search,
iterated hill climbing, and simulated annealing.

2.6.2.1. Conditional independencies-based approaches

The principle of conditional independencies-based approaches is to search for
the Markov blanket for each node Xj, j = 1, ..., p; i.e., it selects the relative vari-
ables with node Xj to identify the causal relations between the random variables,
as the arcs represent probabilistic dependencies. The tests are usually done us-
ing statistical methods or information theoretic measures.
Let X and Y be two variables, and Z be the set of all parents of the conditioning
variables, then we can test the following hypothesis:

H0 : X ⊥⊥ Y |Z vs H1 : X 6⊥⊥ Y |Z (2.92)

by several statistic tests, such as the log likelihood ratio test G2(X, Y |Z) or Pear-
son’s X 2 test X 2(X, Y |Z) (Scutari and Denis (2014); Neapolitan (2003)), for
discrete data. The log likelihood ratio measure is given by

G2(X, Y |Z) =
∑
i∈I

∑
j∈J

∑
k∈K

nijk
n

log nijk × Count(Zk = zk)
Count(Xi = xi, Zk = zk)× Count(Yj = yj, Zk = zk)

(2.93)
, where I, J , and K are the levels or categories of X, Y , and Z respectively, and
Person’s X 2 is given by

X 2(X, Y |Z) =
∑
i∈I

∑
j∈J

∑
k∈K

(nijk − rijk)2

rijk
(2.94)
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, where

rijk = Count(Xi = xi, Zk = zk)× Count(Yj = yj, Zk = zk)
Count(Zk = zk)

,

and nijk = Count(Xi = xi, Yj = yj, Zk = zk) is the number of observations when
Xi = xi, Yj = yj and Zk = zk. In both cases, the null hypothesis can be tested
with the degree of freedom equal to (I − 1)(J − 1)K.

On the other hand, for the continuous training data set, we can test the null hy-
pothesis using various measures such as the t student’s test t(X, Y |Z) or Fisher’s
Z test Z(X, Y |Z) (Scutari and Denis (2014); Neapolitan (2003)). The student’s
t test is given by

t(X, Y |Z) = ρX,Y |Z

√√√√ n− 2
1− ρ2

X,Y |Z
, (2.95)

with n− |Z| − 2 degree of freedom, where ρX,Y |Z is the partial correlation coeffi-
cients of X and Y given Z, and the Fisher’s Z test is given by

Z(X, Y |Z) =

√
n− |Z| − 3

2 log
1 + ρ2

X,Y |Z

1− ρ2
X,Y |Z

. (2.96)

The conditional independence approach is equivalent to minimising Kullback–
Leibler divergence using the score-based approach. If the null hypothesis is re-
jected, the arcs Y → X will exist in the DAG, see figure 2.6b, that represent the
null hypothesis.

Many algorithms dependent on the conditional independencies-based approach
were introduced to find the structures of DAGs; for example, the inductive causa-
tion algorithm (Verma and Pearl (1991); Nagarajan et al. (2014)), PC algorithm
(Spirtes et al. (2001)), and grow shrink algorithm (Edera et al. (2014)).

The biggest disadvantage of conditional independent approaches is that the
wrong decisions in one test will lead to wrong estimation for new cases and the
exponential number of conditional independence tests.

2.6.2.2. Networks score-based approaches

Conditional independence tests with large condition sets may be unreliable
unless the size of the data set is large. The score solves the structure as an opti-
misation problem. We will find the set of possible network structures and use a
scoring measure to find the best model fit for the training data, so we will have
an exponential number of possible networks to find its score and choose the
structure with the highest score. The score is based on penalised log-likelihood,
such as the AIC score ( Akaike information criterion, (Akaike (1973))), BIC score
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(Bayesian information criterion, (Schwarz (1978))), and MDL score (Minimum
description length, (Lam and Bacchus (1994); Rissanen (2007); Suzuki (1993))).
The Bayesian score is equivalent to the marginal likelihood of the model given
the data such as BDeu score (Bayesian Dirichlet equivalent uniform (Hecker-
man et al. (1995))). The score needs a strategy to choose the best structure
from the search space. Many heuristic search methods were proposed for the
learning structures of Bayesian networks, such as the greedy search algorithm,
simulate annealing, tabu search, or genetic algorithm. The most common search
algorithm is the greedy search, such as the hill climbing algorithm, algorithm 1,
(Scutari and Denis (2014); Korb and Nicholson (2010)). This algorithm usually
starts from an empty structure and finds the structure from the space through
searching the maximum score by adding, deleting, or reversing the arc at the
same time. The main advantage of this approach is that it uses all the variables
at once and builds the whole structure and individual mistakes are less frequent.
This dissertation is interested in illustrating the penalised log-likelihood score.

The likelihood score is the probability of the training data given a Bayesian
network model. The likelihood score is given by

logP (D|G,Θ) = log
p∏
j=1

n∏
i=1

P (Xj = xij|π(Xj)). (2.97)

Since the network complexity increases as the number of parents for each node
increases, there is a frequency of possible error in the estimation; so a penalty
term is added as follows:

logP (D|G,Θ) = log
p∏
j=1

n∏
i=1

P (Xj = xij|π(Xj))− ψ(n)dim(G) (2.98)

, where dim(G) is the dimension of the Bayesian network represented by G, and
ψ(n) is function of instances n. The most common score is the BIC score which
is given by

BIC =
p∑
j=1

logP (Xj|π(Xj))− l
2 log n for discrete data,

BIC =
p∑
j=1

log f(Xj|π(Xj))− l
2 log n for continuous data,

(2.99)

where l is the number of parameters in the network.

2.7. Inference (Queries)
The most important thing that can be done after learning the Bayesian model

is to perform inference estimation by computing the posterior probability distri-
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Algorithm 1 Hill Climbing Algorithm.
1: Start from complete graph or empty graph G
2: Compute the score of G, denoted by SG
3: do
4: Add or delete or reverse arcs considering that the network structure G must

be acyclic and compute the new score SGnew
5: if SGnew > SG then SGnew = SG
6: while the score SG increases
7: Return the DAG G.

bution over queried nodes given values for evidence nodes. To be as accurate as
possible, we can perform inference by applying Bayes’ theorem many times to
solve the query.

For a simple connection in a Bayesian network structure, X → Y → Z , the
posterior probability (belief) of Y , given the evidence about the parent X, is

P (X = x|Y = y) = P (Y = y|X = x)P (X = x)
P (Y = y) , (2.100)

where P (X = x) is the prior and P (Y = y|X = x) is the likelihood. Also, using
the independencies implied in the network,

P (Z|X = x) =
∑
Y=y

P (Z|Y )P (Y |X = x). (2.101)

Additionally, if we have evidence about the node, Z = z, then the posterior
probability of X, given Z, is given by Bayes’ theorem and the chain rule

P (X = x|Z = z) = P (Z = z|X = x)P (X = x)
p(Z = z)

=
∑
Y=y

P (Z = z|Y = y)P (Y = y|X = x)P (X = x)
P (Z = z) , (2.102)

since Z ⊥⊥ X|Y .
Note that for long and multiple paths, the inference computation will be com-

plex; so approximate inference algorithms are recommended. The basic idea
behind simulation is to generate a large number of cases from the global dis-
tribution of G and then estimate the posterior probability using the simulated
data. Additionally to generate large cases, let the value of posterior probability
converge to the exact value by the Law of Large numbers from statistics. Var-
ious simulation methods were discussed for estimating the probability, such as
forward sampling and Likelihood weighting algorithms. In the following, we will
illustrate how to find the approximate posterior probability P (Y = y|Z = z),
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where Y,Z ⊆ X.
These approximate inference algorithms use Monte Carlo simulations to sam-

ple from the global distribution of X and thus estimate posterior probability. In
particular, they generate a large number of samples from the Bayesian network
and estimate the relevant conditional probabilities by weighing the samples that
include both Y = y and Z = z against those that include only Z = z. For more
details see (Scutari and Denis (2014); Korb and Nicholson (2010); Neapolitan
(2003)).

One of the most important concepts related to a sampling algorithm is what is
called the topological order.

Definition 2.7.1. [Topological order, (Koller and Friedman (2009))]. Let
X1, ..., Xp be nodes on a Bayesian graph G =< X,E >, where X and E as
mentioned before; thenX1, ..., Xp is in topological order whenever we haveXi → Xj,
then i < j.

We can have many topological orders as in figure 2.5; X1, X2, X3, X4, X5 or
X2, X1, X3, X4, X5 or X1, X2, X4, X3, X5, among others. That is, the topological
orders are not unique.

2.7.1. Forward Sampling simulation algorithm
Logic Sampling simulation (Scutari and Denis (2014); Korb and Nicholson

(2010)) starts by ordering the nodes topologically, beginning from the top of
the a DAG G =< X,E >. Let X1, ..., Xp be the topological order of the DAG,
then for each variable Xj ∈ X, j = 1, ..., p, generate a suitable large instance
xj = (x1, ..., xn∗) from the local Bayesian probability distribution of Xj|π(Xj),
where n∗ is a large sample size. Now we can perform any posterior probability
estimation by weighing the samples that include both Y = y and Z = z against
those that include only Z = z

P (Y = y|Z = z) =

n∗∑
i=1

Counti(Y = y,Z = Z)
n∗∑
i=1

Counti(Z = z)
, (2.103)

where Y,Z ⊆ X. But sometimes the probability of the evidence P (Z = z) is
small which makes the algorithm inefficient because some instances in the gener-
ated sample will be discarded without contributing to the estimation of posterior
probability.

2.7.2. Likelihood weighing simulation algorithm
We want to find the estimation of the posterior probability as an improve-

ment to forward sampling algorithm. This algorithm (Scutari and Denis (2014);
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Korb and Nicholson (2010)) also starts by ordering the nodes of G =< X,E >
topologically, then for each variable Xj ∈ X, j = 1, ..., p, generate a suitable
large instance xj = (x1, ..., xn∗) from the local Bayesian probability distribution
of Xj|π(Xj), where n∗ is a large sample size.

In this approach, all the samples generated by likelihood weighing include
the evidence by design. However, this means that we are not sampling from
the original Bayesian network any more, but we are sampling from a second
Bayesian network in which all the nodes in evidence are fixed.

To estimate the posterior probability P (Y = y|Z = z), where Y,Z ⊆ X, collect
the generated samples together as x = (xi1, ..,xip), i = 1, ..., n∗; then use the
values of evidence z = (z1, ..., zk) that is corresponding to the set of k parents
(evidence nodes) Z to compute the weight wi

wi =
∏
Xj∈Z

P (Xj|π(Xj)). (2.104)

The name indicates that the weights of different samples are derived from the
likelihood of the evidence accumulated throughout the sampling process (x1, w1),
..., (xn∗ , wn∗). Then the posterior probability estimation is

P (Y = y|Z = z) =

n∗∑
i=1

wiI(yi=y)

n∗∑
i=1

wi

, (2.105)

where I(yi=y) = 1, is the instance yi in the generated sample that corresponds to
the set of nodes Y and equal to y. Otherwise, I(yi=y) = 0.
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3. Classification using Bayesian
networks

Supervised learning is an algorithm that uses input categorical training data to
infer the mapping function (model) by mapping the training dataD = (X1, ..., Xp)
to output one Y = {1, ..., J}, where J is the number of labels.

Classification is to assign labels or categories or levels Y ∈ {1, ..., J} to in-
stances described by a set of predictor variables {(y1,x1), ..., (yi,xi), ..., (yn,xn)},
where xi = (xi1, ..., xip) is the ith instance.

Bayesian networks have been extended to answer the classification task where
one wishes to predict the label of a class variable Y ∈ {1, ..., J}, having observed
a set of explanatory variables X = (X1, ..., Xp).

Many approaches use simple, general, and complex Bayesian networks for
classification. The simplest Bayesian network classifier is the Naive Bayes ap-
proach (NB) (Maron and Kuhns (1960); Minsky (1961)), where the components
of X are assumed to be independent given the class Y . Tree Augmented Naive
Bayes (TAN) (Friedman et al. (1997)) is a direct extension of NB, where each
variable Xj, j = 1, ..., p, may depend on at most one other variable than Y .
Unrestricted Bayesian Networks (Koller and Friedman (2009); Friedman et al.
(1997); Heckerman et al. (1995)) build Bayesian networks over the joint set (Y,
X) and classify any instance by estimating the posterior probability P (Y |X) using
the network. Multinet Bayesian Networks (Friedman et al. (1997); Geiger and
Heckerman (1996)) build multiple Bayesian networks over the observations cor-
responding to each label of Y . This gives an estimation of P (X, Y ), and using
Bayes rule, one may compute P (Y |X).

Feature selection approaches aim to reduce the dimension of the data, keeping
only the important variables for the classification. Different feature selection ap-
proaches have been suggested in literature (Langley and Sage (1994); Pazzani
and Billsus (1997)). Such approaches may be embedded in the process of clas-
sification or used as independent pre-processing. We use the later approaches
based on random forests variable importance (Ishak (2007)).

Bayesian networks for continuous data are strongly based on the Gaussian as-
sumption and very sensitive to it. When this assumption is not true it is common
to use either Cox-Box transformations or to discretise the data (Friedman et al.
(1997)).

In this part of the dissertation, we show that combining feature selection and
discretisation through Bayesian network classifiers gives a powerful approach
compared to other classical machine learning methods for classification, such as
random forests (RF), support vector machines (SVM), and CART (classification
and regression trees (Breiman et al. (1984)). We introduce these two new ap-
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proaches we have developed together. The method giving the best result over a
wide choice of experiments is the multinets approach (Friedman et al. (1997);
Geiger and Heckerman (1996)).

A large choice of data sets from the UCI machine learning repository are used
in our experiments, and an application to Epilepsy type prediction based on
PET (Positron Emission Tomography) scan data confirms the efficiency of our
approach.

In next section, we will introduce the most known Bayesian classifiers such
as Naive Bayes (NB),(Maron and Kuhns (1960); Minsky (1961)), Tree Aug-
mented Naive Bayes (TAN),(Friedman et al. (1997)), Multinets Bayesian clas-
sifier (MN), (Friedman et al. (1997); Geiger and Heckerman (1996)), and Unre-
stricted Bayesian Networks classifier (UBN) (Friedman et al. (1997); Heckerman
et al. (1995); Koller and Friedman (2009)).

3.1. Some existing approaches
We will give here a brief description of some known existing approaches.

3.1.1. Naive Bayes (NB)
Naive Bayes (Maron and Kuhns (1960); Minsky (1961)) is the simplest Bayesian

classifier. It is naive because of its naive assumption that all the variables are con-
ditionally independent, given the class variable Y , as shown in figure 3.1, and its
Bayes because it calculates the probability of each class, given the other variables,
by Bayes rule as

P (y|x1, .., xp) =
P (Y = y)

p∏
j=1

P (Xj|Y = y)

P (X1, ..., Xp)
(3.1)

Y

X2X1 .... Xp−1 Xp

Figure 3.1. – Structure of naive Bayes classifier.

From figure 3.1, the factorisation of the joint probability distribution for naive
Bayes classifier based on its assumption is given by

P (y,X1, ..., Xp) = P (y)
p∏
j=1

P (Xj|y), (3.2)
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and the class prediction for Y may be computed using

ŷ = argmax
y

P (y|X1, ..., Xp) = argmax
y

P (y)P (X1, ..., Xp|y), (3.3)

where P (X1, ..., Xp|y) is inferred from the network. For the learning parameters,
we calculate P (Y = yi), yi ∈ {1, ..., J} by

P (Y = yi) = ni
n

(3.4)

, where nj is the number of instances that have the class yi and compute the
probability P (Xj = xk|Y = yj) as follows:

P (Xj = xk|Y = yi) = nijk
nj

, (3.5)

for each value xk of the attribute Xi in the discrete case, where nijk is the num-
ber of cases have the class yi and value xk for the attribute Xj. When X ′js are
continuous, then each Xj belongs to normal distribution with the mean µ and
variance equal σ2; so

P (Xj = xk|Y = yi) = g(xk;µij, σ2
ij), (3.6)

where g is the normal density function with a mean of Xi equal µij and variance
σ2
ij. For more details, see (Mitchell (1990); Koller and Friedman (2009)).
The naive Bayes rates well with comparison to other classifiers, especially for

medical application (Jebreen and Ghattas (2016)), as we will see in the next
sections.

3.1.2. Tree Augmented Naive Bayes (TAN)
TAN (Friedman et al. (1997)) is another type of restricted Bayesian network

classifier that takes into account the correlation between the predictor variables.
It allows each variable in the network to have at most one other parent than
Y, see figure 3.2. The factorisation for joint probability distribution under TAN
assumption is given by

P (X1, .., Xp, y) = P (y)P (Xq|y)
p∏

j=1,j 6=q
P (Xi|y, π(Xi)), (3.7)

where Xq denotes the root node, which is X3 in figure 3.2
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Y

X2X1 X3 X4 X5

Figure 3.2. – Structure of TAN classifier.

The Chow and Liu algorithm (Chow and Liu (1968)) is updated by (Friedman
et al. (1997)) to learn the structure of TAN taking into account the class variable
by computing the conditional mutual information between each pair of predictor
variables given the class as follows:

I(Xi, Xj|Y ) =
∑
xi

∑
xj

∑
y

P (xi, xj, y) log P (xi, xj|y)
P (xi|y)P (xj|y) , (3.8)

for i, j = 1, .., p and i 6= j. Learning the TAN structure starts from a complete
undirected graph with edges having a weight equal to I(Xi, Xj|Y ). The Kruskal
algorithm (Kruskal (1956)) is used to obtain the maximum spanning tree from
the structure. Finally, the class variable is set to be the parent of all predictor
variables, and the second parent is chosen randomly among the predictor vari-
ables to determine the direction of the edges which is agreed with TAN structure
restriction.

3.1.3. Multinet Bayesian networks (MN)
MNs (Friedman et al. (1997); Geiger and Heckerman (1996)) consist of esti-

mating J Bayesian networks separately for each label of Y , figure 3.3. Each class
is used to estimate the conditional probabilities P (X|Y ). Bayes rule is then used
to estimate the posterior probabilities

P (Y |X) = P (X|Y )P (Y )∑
x,y
P (X, Y )P (Y ) . (3.9)

The idea behind this approach is that the interactions between the input vari-
ables X may be different according to the value of Y.
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y1

X1 X2

X3

X4

(a) Bayesian networks for the data has label
y1.

y2

X2 X2

X1

X4

(b) Bayesian networks for the the data has
label y2.

y3

X1 X2

X3

X4

(c) Bayesian networks for the data has label
y3.

y4

X1 X2

X3

X4

(d) Bayesian networks for the data has label
y4.

Figure 3.3. – Example of multinets Bayesian networks for the data with four labels.

3.1.4. Unrestricted Bayesian Network Classifier (UBN)
A Bayesian network denoted by BN = (G,Θ) is a directed acyclic graph

G with parameter Θ. Each node of G corresponds to set of variables X =
{Y,X1, ..., Xp}, where Y is the class of variables. The structure of graph G rep-
resents the dependencies between the variables, and Θ = (θ1, ..., θp) are the con-
ditional probabilities of each variable Xj over π(Xj), the set of its parents in the
graph. A Bayesian network assumes that the joint probability of X = (X1, ..., Xp)
is factorised as follows:

P (X1, ..., Xp) =
p∏
j=1

P (Xj|π(Xj)). (3.10)

A graph G is unrestricted because there is no restriction between the variables
as in NB or TAN. So consider the case where the class of variables Y has no
parents. Thus, the factorisation of joint probability distribution over X is given
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by

P (Y,X1, ..., Xp) = P (Y )
p∏
j=1

P (Xj|π(Xj)). (3.11)

Learning a Bayesian network (Friedman et al. (1997); Heckerman et al. (1995);
Koller and Friedman (2009)) is carried out through the estimation of the struc-
ture of the graph G and the set of parameters Θ from the data set.

Structure learning for Bayesian networks as we studied before may be done
using conditional independency statistical tests or algorithms aimed to maximise
a score over the structure (e.g. BIC score and MDL score) using heuristic search
algorithms, such as hill clamming algorithm, algorithm 1. In our experiments,
we used BIC score to learn the structure of Bayesian networks, which is the most
common.

The parameters of Bayesian networks may be learned either by maximum like-
lihood estimation (MLE) or by Bayesian estimation.

In our work, we used MLE to estimate the parameters for the continuous at-
tributes as studied in the previous sections. For a discrete node, the correspond-
ing conditional distribution is assumed to be multinomial with parameter θ as in
the previous sections. The Bayesian Maximum, a posteriori approach, is used to
estimate the parameters; i.e, the estimation of θ is the one which maximises

P (Θ|X) ∝ P (X|Θ)P (Θ), (3.12)

where P (Θ|X) is the posterior distribution; P (X|Θ) is the multinomial likelihood
function, and P (Θ) is the prior distribution taken to be a Dirichlet distribution.

The posterior probabilities P (Y |X) may be inferred by using different approaches
such as using Bayes rule as observed with learning parameters in Naive Bayes or
using the approximating inference algorithm in section 2.7.

3.2. Pre-processing
We introduce here two pre-processing approaches often used in supervised

learning: discretisation and feature selection.

3.2.1. Discretisation
Bayesian networks for continuous data are strongly based on the Gaussian

assumption. In real data sets, this assumption rarely holds, and the variables
may be both continuous or discrete. That is why we choose to discretise the
data. The discretisation can be carried out with or without the existing class of
variables, and keeping the class variable inside computation will keep the infor-
mation on the data and maximise the dependence between the variable and the
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class (Martínez (2010)). Also, the discretisation can be performed on the vari-
ables individually or simultaneously. There are many approaches to discretise
data, discretisation by interval (Hartemink (2001)), entropy measure (Fayyad
and Irani (1993)), ReliefF (Kononenko (1994); Sikonja and Kononenko (1995)),
amo0ng others. In the following sections, we will give a brief description of
discretisation by entropy and ReliefF measure.

3.2.1.1. Discretisation using entropy measure

The Entropy discretisation method (Fayyad and Irani (1993)) discretises the
data to have maximal information gain. This is done by discretising the variable
individually to J∗ breaks (bins or splits). Let us consider we have data set D =
{(x1, y1), ..., (xn, yn)}, with J classes and yj ∈ {1, .., J} and a partition boundary
b∗.

First, it calculates the entropy for each level in the class variable Y by

H(Y ) = −
∑
i∈J

pi log pi, (3.13)

where pi is the probability of each label in the class variable. Then for a variable
Xj, it randomly chooses a bin b∗ that divides the variable instances into two
parts: D1,Xj>b∗, which means that all the instances are greater than the bin b∗,
and D2,Xj≤b∗, which means that all the instances are lower than the bin b∗ with
size n1 and n2 respectively and then calculates the entropy for each partition

H(Y |Xj, b
∗) = n1

n
H(Y |Xj,D1,Xj>b∗) + n2

n
H(Y |Xj,D2,Xj≤b∗). (3.14)

Now, computing the information gain for each bins b∗ by

Information-Gain (Y |Xj, b
∗) = H∗(Y |Xj, b

∗) = H(Y )−H(Y |Xj, b
∗). (3.15)

Repeating the above procedure for different bins b∗’s to select the optimal split
point, b∗opt, that corresponds to the highest information gain, you will obtain a
binary discretisation by encoding the variable instances with two discrete labels.
This approach can then be applied recursively to both of the partitions induced by
b∗opt until some condition is satisfied to obtain multiple intervals on the feature X.
For that, the entropy discretisation uses the Minimal Description Length Principle
to determine the optimal information gained and stops searching for the optimal
split point b∗opt, if

H∗(Y |Xj, b
∗) < log n− 1

n
+ (3|J | − 2) + [|J |H(Y )− |J1|H(Y |Xj,≥b∗ , b

∗)− |J2|H(Y |Xj,<b∗)]
n

,

(3.16)
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where |Ji| is the number of classes in each partition (Martínez (2010)).

3.2.1.2. Discretisation using ReliefF measure

We used the ReliefF measure (Kononenko (1994); Sikonja and Kononenko
(1995)), algorithm 2, for variables’ quality estimation to discretise the continu-
ous variables. The ReliefF algorithm selects an instance Ri randomly and then
searches for the k nearest instances having the same class as Ri, which is called
nearest hits Hi(Y ), and searches for the k nearest neighbours having a differ-
ent class than Ri, which called nearest misses Mi(Y ). This process is repeated
m times to update the quality estimation for the variables, where m is a user
defined parameter. The quality estimation for the variable Xj at every iteration
is

W [Xj] = W [Xj]−

k∑
i=1

diff(Xj, Ri, Hi)

m.k

+

∑
Y 6=class(Ri)

[
P (Y )

1−P (class(Ri))

k∑
i=1

diff(Xj, Ri,Mi(Y ))
]

m.k
,

(3.17)

where W [Xj] is initialised to zero, ∀ j = 1, .., p, and diff(Xj, t1, t2) computes the
difference between the values of the attribute Xj for instances t1 and t2.

We use the measures

diff(Xj, t1, t2) =
{

0, value(Xj, t1) = value(Xj, t2)
1, value(Xj, t1) 6= value(Xj, t2),

}
(3.18)

if the variables are nominal and

diff(Xj, t1, t2) = |value(Xj, t1)− value(Xj, t2)|
max(Xj)−min(Xj)

, (3.19)

if the variables are continuous.
To discretise the attribute Xj, the ReliefF measure is used with a greedy search

algorithm, algorithm 3, to find the split point, which maximises the heuristic
measure W [Xj]. At each iteration the algorithm searches for the new split point
maximises the heuristic estimate of the discretised variable.

3.2.2. Feature selection using random forest
Here we will give a brief description of the Random Forest (RF) algorithm and

the approach of ranking an important variable using RF. We will also illustrate
our approach of feature selection based on RF.
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Algorithm 2 Algorithm of ReliefF Measure.
1: Set the weights W [Xj] = 0 for all j = 1, ..., p
2: for i=1:m, m is user define do
3: Select an instance Ri randomly which has class y ;
4: Select randomly the k nearest neighbours instances, Hi having the same

class than Ri;
5: Select randomly the k nearest neighbours instances, Mi having different

class than Ri;
6: for Xj, j=1:p do
7:

W [Xj] = W [Xj]−

k∑
i=1

diff(Xj, Ri, Hj)

m.k

+

∑
Y 6=class(Ri)

[
P (Y )

1−P (class(Ri))

k∑
i=1

diff(Xj, Ri,Mi(Y ))
]

m.k
,

8: end for
9: end for

3.2.2.1. RF Classifier

RF (Breiman (2001)) is among the most known and powerful classification
models. They combine (ensemble) a large number of trees (Breiman et al.
(1984)) trained over the bootstrap samples of the original data set. The RF
algorithm has two main parameters: the number of trees T in an ensemble to
grow and the number of features p to select randomly at each split.

3.2.2.2. Feature selection using RF

RFs (Breiman (2001)) are particularly attractive because they offer a very orig-
inal variable importance measure (Strobl et al. (2008)) widely analysed in litera-

Algorithm 3 Greedy Algorithm searching for the split points that maximise the
ReliefF measure.

1: Best Discretisation = {}
2: Set of split point = {}
3: repeat m times
4: if Set of split points is best so far then
5: Best discretisation =Set of split points
6: end if
7: until the heuristic search is worse than the previous step.
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ture and proved to be very efficient in a large number of situations (Díaz-Uriarte
and Alvarez de Andrés (2006)).

We use the variable importance assessed by RFs in order to select the best sub-
set of variables for the classification task. This is done following the idea given
by (Ishak (2007)) and summarised in algorithm 4. Using the feature selection
approach (Langley and Sage (1994); Pazzani and Billsus (1997)), we eliminate
unimportant features to include into the model and save costs by learning from
the meaningful variables only.

A RF algorithm runs as a large collection of decision trees (Breiman et al.
(1984)). Let D = (X, Y ) be a data set. The RF algorithm chooses a bootstrap
sample with replacement Di from D for i = 1, ..., ntree and constructs a tree
Ti using Di. The prediction of new instances are obtained by averaging the
predictions obtained by each tree Ti in a regression case or taking their majority
vote in a classification case. The important thing in RF is the use of an out
of bag (OOB) sample (the set of instances in D that did not appear in Di) to
construct a new measure for variables importance. Breiman (Breiman (2001))
introduces two measures for variables importance using RF feature selection.
First, Gini importance, which is the total decrease in node impurities through
splitting the variable and averaged over all trees (Díaz-Uriarte and Alvarez de
Andrés (2006)), but this measure of importance prefers the variables with many
categorical levels. Second, the permutation importance, which is the difference
between OOB prediction accuracy for each tree before and after permuting the
values of variable Xj. So, if B(T ) is the OOB sample of the tree T with T ∈
{1, ..., ntree}, then the variable importance of variable Xj in tree T is

V I(T )(Xj) =
∑
i∈B(T ) I(yi = ŷ

(T )
i )

|B(T )|
−
∑
i∈B(T ) I(yi = ŷ

(T )
i,πj

)
|B(T )|

, (3.20)

where ŷ(T )
i is the predicted class for observation i before permuting, and ŷ

(T )
i,πj

is
the predicted class for observation i after permuting the values of variable Xj,
and xi,πj

= (xi,1, ..., xi,j−1, xπj(i),j, xi,j+1, ..., xi,p). Note that V I(T )(Xj) = 0, if the
variable Xj does not exist in the tree T . Then the raw variable importance for
each variable is

V I(Xj) =

ntree∑
T =1

V I(T )(Xj)

ntree
. (3.21)

We compute the average of V I(Xj) over a high number of iterations with high
numbers of trees used to grow to reach the stability.

We use the variables’ importance obtained from RF to rank the variables in
descending order of importance and to select the optimal subset among them.
To do that, we test by cross validation the performance of a sequence of RF clas-
sifiers each using the k most important variables ranging from k = 1, ..., p. The
optimal subset of variables corresponds to the one used in the model showing
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the highest accuracy. The procedure is described in Algorithm 4.
For each variable, we compute its importance by averaging over 100 runs

of RFs. The variables are ranked in the decreasing order of importance and
introduced sequentially in an embedded increasing RF model. The accuracy
of each model is estimated by ten cross-validation and the optimal number of
important variables to retain the one corresponding to the most accurate model.

Algorithm 4 RF Feature Selection.
1: Let D be the data set and p the number of features.
2: for ( i=1:100) do

3: V I =

100∑
i=1

V Ii

100 , where V Ii is the Variables Importance vector at each iteration
i.

4: end for
5: Sort the variables according to descending order of importance: X(1), ..., X(p).
6: Partition D in 10 stratified cross validation sample: D1, ...,D10, let D−j = D\Dj ,
7: for ( j=1:10) do
8: for ( k=1:p) do
9: Mk

j = f(X(1), ..., X(k),D−j)
10: Errorkj = Test(Mk

j ,Dj)

11: Errork = 1
10

10∑
j=1

Errorkj

12: end for
13: end for
14: kopt = Argmink {Errork}, where kopt is the optimal number of important

variables to keep.

3.3. Experimental methodologies and results
In this section, we compare the efficiency of Bayesian network classifiers,

NB, TAN, UBN, and MN to other classical methods such as SVM, RF, and de-
cision trees (CART). Support vector machines depend on two parameters k∗ and
C = cost, which are the kernel parameter and the constant of the regularisation
term in the Lagrange formulation respectively. These parameters are tuned and
compared with their default values, k∗ = 1/p and C = 1, to choose the best
performance (Karatzoglou et al. (2006)). The range of k∗ and C are chosen re-
spectively to be 10−6:−1 and 101:4. For RFs, we choose the default values of the
parameters suggested in R packages.

The experiments are done over thirteen data sets from the machine learning
UCI repository. As mentioned in previous sections, the structure is learned using
BIC score, and the learning parameters are computed using MLE for continuous
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data sets and Bayesian estimation for discrete data sets. A short description of
these data sets is given in Table 3.1. First, all the explanatory variables are dis-
cretised using the ReliefF measure. Important variables are computed using RFs
by fixing the number of trees to ntree=5001 to ensure the stability of variables
importance, and it is averagely computed over 100 times as shown in algorithm
4.

To assess the accuracy of the classifiers, we compute the average misclassifi-
cation errors (MCE) using five fold cross-validation. Cross-validation is run fifty
times in each case and the average over these runs is reported.

Data sets # Instances # Variables # classes
#

Impr-
discrete

#
Impr-
continuous

toys 100 50 2 8 4
breast 683 9 2 6 7
glass 214 9 6 9 7
wine 178 13 3 9 8
vehicle 846 18 4 12 8
pima 768 8 2 3 6
satimage 4435 36 6 35 32
segment 2310 19 7 19 7
vowel 990 10 11 10 10
waveform 5000 40 3 21 30
landsat 6435 36 6 36 28
pendigits 10992 16 10 16 16
letter 20000 16 26 16 15

Table 3.1. – Data sets description, where "# Impr-discrete" and "# Impr-
continuous" are numbers of important variables in discrete and con-
tinuous cases respectively.
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Data sets SVM CART RF NB UBN MN
toys 1.50 12.45 6.35 7.39 3.07 40.94
toys-R 0.04 12.14 1.40 2.40 1.19 0.28
breast 3.05 5.31 2.84 3.82 4.60 4.65
breast-R 3.02 5.27 2.95 3.36 4.61 4.62
glass 28.66 31.06 20.89 61.23 45.03 50.28
glass-R 28.15 30.53 20.53 55.89 45.84 51.25
wine 1.79 11.93 1.98 2.69 1.16 0.76
wine-R 1.71 11.58 2.10 2.90 1.29 1.28
vehicle 14.82 31.87 24.86 54.24 15.59 16.01
vehicle-R 21.20 32.06 25.22 50.11 25.52 25.97
pima 22.9 25.67 23.56 24.62 25.05 26.06
pima-R 23.29 25.79 24.10 24.36 24.54 24.99
satimage 8.14 18.96 8.82 20.35 14.54 14.58
satimage-R 8.33 18.91 8.86 20.37 14.54 14.57
segment 3.13 8.09 2.15 20.29 11.84 85.72
segment-R 2.64 8.15 1.62 11.26 7.70 7.56
vowel 1.14 39.83 4.00 33.24 16.29 14.95
vowel-R 1.14 39.83 4.00 33.24 16.29 14.95
waveform 13.61 26.55 14.39 20.01 14.71 14.78
waveform-R 13.36 26.55 14.23 20.02 14.66 14.63
landsat 7.77 18.87 8.24 20.39 14.75 14.60
landsat-R 8.32 18.88 8.30 20.33 14.47 14.51
pendigits 0.38 10.15 0.14 12.01 1.00 24.99
pendigits-R 0.38 10.15 0.14 12.01 1.00 24.99
letter 2.51 60.01 3.70 41.57 12.69 13.94
letter-R 2.61 51.70 3.18 32.60 10.22 10.11

Table 3.2. – Experimental results with (MCE) five fold CV (averaged over fifty
runs). Data is continuous and "R" denotes the reduced data set by
feature selection.

Table 3.1 gives a summary of the data sets used in the experiments including
the number of instances, number of variables, number of labels, and the number
of important variables retained by feature selection for both the discretised and
continuous versions of data sets. Table 3.2 and Table 3.3 give the missclassifi-
cation errors of all the compared models for the original continuous data sets
and for their discretised version respectively. In both cases, MCE are reported for
each data set and its reduced version by feature selection.

Table 3.4 shows the differences of MCE between the continuous and the dis-
crete cases for both reduced and non-reduced data sets. Whereas discretisation
does not contribute to increasing the performance of the classical machine learn-
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ing approaches, its contribution for BN classifiers, mainly NB and MN are very
significant in most cases.

To see clearly whether the feature selection procedure gives rise to better mod-
els, we compute the difference of MCE before and after feature selection. These
differences are reported in Table 3.5 and Table 3.6 for continuous and discrete
cases respectively. We can see that despite the unrestricted BN approach, in most
cases, we gain in accuracy when performing feature selection. The gain is higher
in general for the discretised version of the data sets.

Data sets SVM CART RF NB UBN MN TAN
toys 2.23 12.07 3.63 2.51 6.21 2.08 7.15
toys-R 2.67 11.99 3.29 2.33 4.35 2.53 4.00
breast 2.21 5.31 2.73 2.49 3.03 2.95 3.13
breast-R 2.20 5.30 2.37 2.47 2.98 2.68 3.19
glass 22.57 30.90 20.49 26.91 34.60 23.97 22.50
glass-R 22.57 30.90 20.49 26.91 34.60 23.97 22.50
wine 1.49 9.90 1.82 0.99 1.62 2.09 2.23
wine-R 1.67 9.94 1.63 1.12 1.67 1.89 1.79
vehicle 28.84 34.64 29.86 40.62 34.30 29.07 29.35
vehicle-R 26.65 34.27 27.50 38.97 37.64 29.05 29.53
pima 23.34 24.83 23.64 24.88 24.41 24.60 25.40
pima-R 23.14 23.79 21.82 22.30 22.29 22.33 23.65
satimage 10.4 19.06 10.43 19.91 19.01 14.00 13.70
satimage-R 10.46 19.05 10.43 19.93 19.72 13.95 13.46
segment 4.48 11.23 4.47 9.58 6.74 6.53 5.97
segment-R 4.48 11.23 4.47 9.58 6.74 6.53 5.97
vowel 13.64 45.51 13.00 35.01 50.85 26.98 24.71
vowel-R 13.64 45.51 13.00 35.01 50.85 26.98 24.71
waveform 17.36 26.93 18.14 20.43 20.52 21.15 21.14
waveform-R 17.05 26.93 17.77 20.39 20.96 21.11 20.51
landsat 10.00 19.19 9.87 20.26 18.77 13.66 13.38
landsat-R 10.00 19.19 9.87 20.26 18.77 13.66 13.38
pendigits 1.52 20.60 1.77 14.24 6.41 3.09 5.17
pendigits-R 1.52 20.60 1.77 14.24 6.41 3.09 5.17
letter 8.03 53.36 7.59 33.92 24.34 18.20 23.14
letter-R 8.03 53.36 7.59 33.92 24.34 18.20 23.14

Table 3.3. – Experimental Results (MCE) with five fold CV (averaged over fifty
runs). Data is discretised and "R" denotes the reduced data set by
features selection.
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Data sets SVM CART RF NB UBN MN
toys −0.73 0.38 2.72 4.88 −3.14 38.86
toys-R −2.63 0.15 −1.89 0.07 −3.16 −2.25
breast 0.84 0.00 0.11 1.33 1.57 1.70
breast-R 0.82 −0.03 0.58 0.89 1.63 1.94
glass 6.09 0.16 0.40 34.32 10.43 26.31
glass-R 5.58 −0.37 0.04 28.98 11.24 27.28
wine 0.30 2.03 0.16 1.70 −0.46 −1.33
wine-R 0.04 1.64 0.47 1.78 −0.38 −0.61
vehicle −14.02 −2.77 −5.00 13.62 −18.71 −13.06
vehicle-R −5.45 −2.21 −2.28 11.14 −12.12 −3.08
pima −0.44 0.84 −0.08 −0.26 0.64 1.46
pima-R 0.15 2.00 2.28 2.06 2.25 2.66
satimage −2.26 −0.10 −1.61 0.44 −4.47 0.58
satimage-R −2.13 −0.14 −1.57 0.44 −5.18 0.62
segment −1.35 −3.14 −2.32 10.71 5.10 79.19
segment-R −1.84 −3.08 −2.85 1.68 0.96 1.03
vowel −12.5 −5.68 −9.00 −1.77 −34.56 −12.03
vowel-R −12.5 −5.68 −9.00 −1.77 −34.56 −12.03
waveform −3.75 −0.38 −3.75 −0.42 −5.81 −6.37
waveform-R −3.69 −0.38 −3.54 −0.37 −6.30 −6.48
landsat −2.23 −0.32 −1.63 0.13 −4.02 0.94
landsat-R −1.68 −0.31 −1.57 0.07 −4.30 0.85
pendigits −1.14 −10.45 −1.63 −2.23 −5.41 21.90
pendigits-R −1.14 −10.45 −1.63 −2.23 −5.41 21.90
letter −5.52 6.65 −3.89 7.65 −11.65 −4.26
letter-R −5.42 −1.66 −4.41 −1.32 −14.12 −8.09

Table 3.4. – Difference between MCE with continuous and discrete data.
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Data sets SVM CART RF NB UBN MN
toys 1.46 0.31 4.95 4.99 1.88 40.66
breast 0.03 0.04 −0.11 0.46 −0.01 0.03
glass 0.51 0.53 0.36 5.34 −0.81 −0.97
wine 0.08 0.35 −0.12 −0.21 −0.13 −0.52
vehicle −6.38 −0.19 −0.36 4.13 −9.93 −9.96
pima −0.39 −0.12 −0.54 0.26 0.51 1.07
satimage −0.19 0.05 −0.04 −0.02 0.00 0.01
segment 0.49 −0.06 0.53 9.03 4.14 78.16
vowel 0.00 0.00 0.00 0.00 0.00 0.00
waveform 0.25 0.00 0.16 −0.01 0.05 0.15
landsat −0.55 −0.01 −0.06 0.06 0.28 0.09
pendigits 0.00 0.00 0.00 0.00 0.00 0.00
letter −0.10 8.31 0.52 8.97 2.47 3.83

Table 3.5. – Difference between MCE with and without feature selection for con-
tinuous data. Positive values mean that models are more accurate
with feature selection.

Data sets SVM CART RF NB UBN MN TAN
toys −0.44 0.08 0.34 0.18 1.86 −0.45 3.15
breast 0.01 0.01 0.36 0.02 0.05 0.27 −0.06
glass 0.00 0.00 0.00 0.00 0.00 0.00 0.00
wine −0.18 −0.04 0.19 −0.13 −0.05 0.20 0.44
vehicle 2.19 0.37 2.36 1.65 −3.34 0.02 −0.18
pima 0.20 1.04 1.82 2.58 2.12 2.27 1.75
satimage −0.06 0.01 0.00 −0.02 −0.71 0.05 0.24
segment 0.00 0.00 0.00 0.00 0.00 0.00 0.00
vowel 0.00 0.00 0.00 0.00 0.00 0.00 0.00
waveform 0.31 0.00 0.37 0.04 −0.44 0.04 0.63
landsat 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pendigits 0.00 0.00 0.00 0.00 0.00 0.00 0.00
letter 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3.6. – Difference between MCE with and without feature selection for dis-
crete data. Positive values mean that models are more accurate with
feature selection.

78



3.4. Application of Bayesian classifier on PET
scan data

To illustrate the efficiency of our approach, we apply it to PET (Positron Emis-
sion Tomography)scanning data obtained for fifty four patients suffering from
four different types of epilepsy. Each of the thirty seven variables in the data
corresponds to the signal intensity measured at a region of interest (ROI) in the
brain (Guedj et al. (2015)). It is supposed that the connectivity, whether it ex-
ists or not, between the ROIs is very important to identify the class of epilepsy.
The graphical models used for classification of such data sets coming from such
images have shown to be very powerful (Mumford and Ramsey (2014); Smith
et al. (2011); Ramsey et al. (2010)).

Epileptic patients are followed by brain PET scan imaging. The images are
segmented according to predefined anatomical regions (variables) in the brain.
Thirty seven regions were considered for fifty four patients followed at La Timone
hospital in Marseille, France. Each patient belongs to one of the four categories
of Epilepsy: BILATERAL, LATERAL, MESIAL, or PLUS. The distribution of these
labels in our sample are sixteen, seven, seventeen, and fourteen, respectively.
For more details on this data set, see (Guedj et al. (2015)).

The aim is to predict the Epilepsy category using the intensity measure of the
thirty-seven regions of interest (ROIs). A particular focus in this application
is about the complex connectivity of the ROIs in the brain. Statistical models
should take into account this connectivity. As it can be seen in Table 3.7 and 3.8,
the models fitted over the continuous data sets show very poor performance.

Here we run the classical methods together with the Bayesian classifiers in the
previous sections using the same discretisation and feature selection approaches.
Since the sample size is very small and as before the MCE, we report using five
fold cross-validation as well as using the leave one out (LOO) approach.

Data sets SVM CART RF NB UBN MN TAN
Epilepsy 31.87 45.67 34.24 43.59 55.22 70.31 −
Epilepsy-R 22.58 43.94 26.10 29.74 36.68 50.52 −
Epilepsy-D 22.03 39.03 20.87 26.75 31.45 26.58 24.25
Epilepsy-D-R 20.25 36.14 18.11 22.03 23.47 17.65 26.03

Table 3.7. – Experimental Results (MCE) with five fold CV (averaged over fifty
runs) for Epilepsy data set, "R" denotes the reduced data set by
features selection and "D" denotes the discrete data set.
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Data sets SVM CART RF NB UBN MN TAN
Epilepsy 29.63 42.59 31.48 44.44 59.26 70.37 −
Epilepsy-R 22.22 42.59 25.93 27.78 33.33 50.00 −
Epilepsy-D 24.07 46.30 20.37 25.93 24.07 24.07 24.07
Epilepsy-D-R 18.52 42.59 18.52 22.22 22.22 16.67 27.78

Table 3.8. – Experimental Results (MCE) with LOO for Epilepsy data set, "R"
denotes the reduced data set by features selection and "D" denotes
the discrete data set.

For all models, the feature selection applied to the Epilepsy data decreases
significantly their MCE. SVM has the best performance with MCE equal to 31.87%
and 22.58% over non-reduced and reduced data respectively in their continuous
version.

Except for SVM, MCE are reduced very significantly when the data set is dis-
cretised. Finally, using feature selection, MCE is thus reduced reaching 17.65%
for multinets Bayesian network classifier (whereas with the original continuous
data set it had 70.31% ). LOO estimation for MCE are yet lower but show the
same patterns.
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4. Graphical models for time series
Inferring networks from temporal data (related to time) are widely used pro-

cesses in the field of graphical model. Many types of dynamic graphical models
are used to model this process. We focus on the case where the number of vari-
ables p is greater than the number of cases n. In this chapter, we view the most
important recent works for inferring the interaction networks.

4.1. Introduction
Modelling interactions between variables is a common task in statistics. This is

often done using graphical models (Lauritzen (1996)) where vertices correspond
to variables and edges to interaction between the corresponding variables. Such
models may be inferred from data using different approaches. Among these ap-
proaches covariance graphs are the simplest as they infer the network by applying
a threshold to the estimated correlation matrix (Cox and Wermuth (1996),Butte
et al. (2000)). Graphical Gaussian models (GGMs) (Whittaker (1990); Dempster
(1972); Lauritzen (1996)) consider rather partial correlations obtained from the
inverse of the covariance matrix (Schäfer and Strimmer (2005a,b)).

Many dynamic models are modelled on various probabilistic models such as
multivariate autoregressive process (Opgen-Rhein and Strimmer (2007)), State
Space, Hidden Markov Models (Beal et al. (2005)), nonparametric additive re-
gression model (Imoto et al. (2002)), among others.

Bayesian networks (BN) (Friedman et al. (1998)) infer interactions by esti-
mating the conditional independence between the variables based on a specific
factorisation of the joint probabilities of the variables. Recently, the neighbour-
hood lasso (Meinshausen and Bühlmann (2006)) and graphical lasso (Friedman
et al. (2008)) suggest fitting a regression model for each variable using the oth-
ers. A variable is connected in the graph to the set of its explanatory variables
whose coefficient in the regression model are not zero.

These approaches have been extended to time series data. Dynamic Bayesian
networks (DBN) (Friedman et al. (1998)) are such direct extensions of Bayesian
networks. For the neighbourhood lasso, a variable X at time point t + 1 is re-
gressed on all the variables observed at time point t.

In this section, we give a brief summary of the recent works on graphical mod-
els for time series. Let X(t) = (X1(t), ..., Xp(t)) be a vectorial real p-dimensional
Gaussian process observed at time t = 1, ..., n. X(t) assumed to follow a normal
distribution N (µ,Σ), where µ is the mean vector, and Σ is the covariance matrix.
All the approaches described in this section make the following assumption:
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First, we assume that X is first order Markovian, that is

P (X(t+ 1)|X(1), ..., X(t)) = P (X(t+ 1)|X(t)). (4.1)

This means that the variables X(t+ 1) depend only on the past variables X(t).
Second, we assume that the process is stationary; that is

P (X(t+ 1)|X(t)) is independent of t. (4.2)

Third, the variables observed at the same time are conditionally independent,
given the others in the past time; that is

Xi(t) ⊥⊥ Xj(t)|X(t′ < t) , where i 6= j, t, t′ ≥ 1. (4.3)

These assumptions ensure the existence of a directed acyclic graph (DAG) G =
(X(t), E(G)), where X(t) is the set of variables or nodes, and E(G) ⊆ (X(t) ×
X(t)) is the set of edges. Then, a Bayesian network corresponds to the following
representation of the joint distribution of X

f(X(t)) =
p∏
j=1

n∏
t=1

f(Xj(t)|π(Xj(t), G)), (4.4)

where π(Xi(t), G) is the set of parents of Xi(t) in the graph G.

... X1(t− 1) X1(t) X1(t + 1) ...

... X2(t− 1) X2(t) X2(t + 1) ...

... X3(t− 1) X3(t) X3(t + 1) ...

Figure 4.1. – Graphical representation of a time series dynamic Bayesian network.

In this chapter, we introduce various types of dynamic models depending on
the concept of the covariance matrix estimation in addition to the dynamic
Bayesian networks (DBN). This chapter is organised as follows: section 2 de-
scribes vector autoregressive model; section 3 describes the ridge regression for
a dynamic process; section 4 describes the lasso approach for a dynamic pro-
cess (Meinshausen and Bühlmann (2006)); section 5 describes a graphical lasso
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approach for a dynamic process (Friedman et al. (2008)); section 6 describes
the DBN approach (Friedman et al. (1998); Murphy and Mian (1999)); section
7 describes the shrinkage approach (Schäfer and Strimmer (2005a,b,c); Opgen-
Rhein and Strimmer (2007); Opgen-rhein and Strimmer (2006)); section 8 de-
scribes the low order conditional dependence approach (G1DBN), and section 9
describes the statistical inference for modular networks approach (SIMoNe).

4.2. Vector autoregressive model (VAR)
The vector autoregressive model of order p∗ (lag order) is given by

X(t) = B +
p∗∑
j=1

AjX(t− jL) + εj, (4.5)

where p∗ is the order of the VAR process; L the time lag, Aj = (aij) is a p × p
matrix of variables coefficients that represent the dynamical structure, and thus
contain the information relevant for reading off the causal relationships; B is a
1× p vector of means, and εj is a white noise vector with size p and has a mean
equal to zero and positive p× p definite covariance matrix Σ.

A special case considered in this dissertation is when L and p∗ are set to 1.
Then the above equation reduces to the VAR(1) process

VAR(1) = X(t+ 1) = B + AX(t) + ε, (4.6)

which is a linear regression of the X(t+1) variables with the last n−1 cases over
the variables X(t) with the first n−1 cases. Sometimes we denote the matrices of
observations corresponding to X(t + 1), X(t) by XF ("future"), and XP ("past"),
respectively.

The VAR process can be used directly to infer the interaction networks by test-
ing the connection between each response variable Xj(t + 1) at time point t + 1
and all predictors variables X(t) at time point t. This is done by testing the sig-
nificance of the estimated regression coefficients ÂOLS = (aij) using hypothesis
tests, where ÂOLS is estimated by ordinary least squares (OLS)

H0 : aij = 0 vs H1 : aij 6= 0 ∀i, j = 1, ..., p, (4.7)

where this hypothesis can be tested using various tests, such as the student’s
t-test to compute the p-value, pij,

tcal = âij√
var(âij)

∼ t(n− 2), (4.8)

and then comparing the values with significant level α. Accepting the null hy-
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pothesis means that there is no significant relation between the predictor and
the response one. We can fill the adjacent matrix with p-values, pij, then choose
the best significant connection by sparsing (values under α are set to zero) the
matrix under threshold α.

The problem of using this approach is the inefficiency when the number of
variables is greater than the number of cases, and thus the coefficients’ estima-
tion do not exist. Additionally, there is no optimal value of α to determine the
best level of significance.

4.3. Ridge regression model approach for time
series

Ridge regression (Hastie et al. (2016)) or L2 norm regression model is similar
to least square, but it shrinks the estimated coefficients towards zero and not
exactly equal to zero. The coefficient estimation for the ridge regression is

Âridge = argmin
A∈Rp

‖ X(t+ 1)−AX(t) ‖2
2︸ ︷︷ ︸

Loss

+λ ‖ A ‖2
2︸ ︷︷ ︸

Penalty

(4.9)

= (X(t)TX(t) + λIp)−1X(t)TX(t+ 1). (4.10)

The first term in equation 4.9 is called the loss function, and the second term is
called the penalty term. Here λ ≥ 0 is a tuning parameter, which controls the
strength of the penalty term. Ridge regression penalises the coefficient terms in
addition to the residual sum of squared. Note that when λ = 0, we get the linear
regression coefficient estimation, and when λ =∞, we get Âridge = 0. Moreover,
the variance decreases and the bias increases as λ increases. We can choose the
best value of λ by cross validation as follows:

λ̂ = min
ncv

ncv∑
i=1

MSE(X(t+ 1)− X̂(t+ 1))

ncv
, (4.11)

where ncv is the number of folds. We can apply the ridge regression recursively
as in the previous section and determine which predictor variables relate to the
response one. We are looking for small values of coefficients in A. Since there
is no criterion to determine the most related variables with the response one,
we can apply test statistics to study the significance of the estimated regression
coefficients as in the previous section.
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4.4. Lasso regression model approach for time
series

Least absolute shrinkage and selection operator (LASSO) estimation or L1
norm for time series data (Tibshirani (1994)) is defined by

Âlasso = argmin
A∈Rp

‖ X(t+ 1)−AX(t) ‖2
2︸ ︷︷ ︸

Loss

+λ ‖ A ‖1︸ ︷︷ ︸
Penalty

, (4.12)

where ‖ A ‖1=
p∑
j=1
|Aj| and λ ≥ 0 is a tuning parameter, which controls the

strength of the penalty term. The solution of the above equation is complex since
it is a non-smooth problem. There are many algorithms for solving the LASSO
equation,such as Least angle regression (LAR) algorithm (Efron et al. (2004);
Hettigoda (2016)) and shooting algorithm (Fu (1998)). The existence of an
L1 norm allows the LASSO model to perform feature selection by shrinking the
coefficients towards exactly zero. As in ridge regression, the variance decreases
and the bias increases as λ increases; also, Âlasso = ÂOLS, when λ = 0 and
Âlasso = 0, when λ =∞.

LAR algorithm is an efficient algorithm for computing the entire lasso path.
At each step, it chooses the best variable to include in the active set and then
updates the least squares coefficient to include all the active variables. The idea
behind it is to move the coefficient estimates in the direction in which the predic-
tor variable is most correlated with the remaining residual (centered response
variable). The coefficients’ paths for LAR change continuously as it moves from
a vector of zeros to the least square solution. You can look at the LAR algorithm
as a forward step-wise regression algorithm.

Meinshausen and Bühlmann (Meinshausen and Bühlmann (2006)) used the
Lasso approach for inferring the adjacent matrix. They applied the lasso regres-
sion for each variable at time point t+ 1 as a response variable, given the others
in earlier time points

Âλ,j = argmin
Aj

[
‖ Xj(t+ 1)− AjX(t) ‖2

2 +λ ‖ Aj ‖1
]
. (4.13)

Solving the above equation for Aj and for optimal value of λ will give all the
neighbours (parents) of Xj(t+ 1) that have non-zero coefficients

nebr(Xj(t+ 1)) = {Xj(t) ∈ X(t) : aij(Xj(t)) 6= 0, i, j ∈ {1, ..., p}}, (4.14)

where nebr denotes the neighbours of the variable.
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4.5. Graphical lasso model approach for time
series

Friedman et al. (Friedman et al. (2008); Banerjee et al. (2008)) suggest the
graphical lasso regression (Glasso) model instead of computing p lasso regression
model as in (Meinshausen and Bühlmann (2006)). This method reduces the cost
of computation, especially when p is high.

Graphical lasso (Glasso) is a Gaussian graphical model (GGM) that represents
the relations between Gaussian random variables. Briefly, consider a Gaussian
random vector X(t) = (X1(t), ..., Xp(t)) ∼ N (µ,Σ) and denote the inverse covari-
ance matrix (adjacent matrix) Θ = Σ−1, and let S be the empirical covariance
matrix,and the problem is to maximise Gaussian log-likelihood of the data

log det(Θ)− tr(ΘS)− ρ ‖ Θ ‖1, (4.15)

where tr denotes the trace, and ‖ Θ ‖1 is the L1 norm.

4.6. Dynamic Bayesian networks (DBN)
Freidman et.al. (Friedman et al. (1998); Murphy and Mian (1999)) suggest

two parts to model the process X(t) using DBN. The first is a prior network BN0,
which determines the distribution of the initial states X(1), and the second is a
transition network BN→, which determines the transition probability P (X(t +
1)|X(t)) for all t. That is,

PBN→(X(1), ...,X(n)) = PBN0(X(1))
n−1∏
t=1

PBN→(X(t+ 1)|X(t)). (4.16)

The structure of a DBN is optimised using BIC is defined as follows:

BIC(X(t), G) = BIC0 +BIC→BN , (4.17)

where BIC0 is the BIC score of the prior network BN0; BIC→BN is the BIC
score for the transition network; BN→; l is the number of parameters in G, and
f̂(Xj(t+ 1)|Xj(t)) is the local conditional distribution for each variable.

For more details about dynamic Bayesian approaches for inferring the dynamic
network see (Rau et al. (2010)).
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4.7. Shrinkage Approach
Schäfer and Strimmer (Schäfer and Strimmer (2005a,b,c); Opgen-Rhein and

Strimmer (2007); Opgen-rhein and Strimmer (2006)) propose to apply James
Stein type shrinkage estimator to get efficient estimates for a partial correlation
matrix in the small sample size when applying the vector autoregressive model
(VAR(1)). The use of these estimates come from the inefficient estimators that
can be obtained by the least squares and maximum likelihood methods, espe-
cially when the number of sample size n is small.

Consider the time series data X(t) = (X1(t), ..., Xp(t)); the VAR(1) model as-
sumes that the value of X(t) is a linear combination of the variables in the previ-
ous time with noise

X(t+ 1) = B + AX(t) + ε, (4.18)

where X(t+1) is the variables in the next time (future) and denoted by XF , X(t)
is the variables in the past time and denoted by XP and ε, Σ2 as before.

X(t + 1) = XF =



X1(2) . . . . . . Xp(2)
X1(3) . . . . . . Xp(3)

...
...

...
...

...
...

...
...

X1(n) . . . . . . Xp(n)

 , (4.19)

X(t) = XP =



X1(1) . . . . . . Xp(1)
X1(2) . . . . . . Xp(2)

...
...

...
...

...
...

...
...

X1(n− 1) . . . . . . Xp(n− 1)

 . (4.20)

Note that the ordinary least square (OLS) estimate is given by

ÂOLS = (XT
PXP )−1XT

PXF . (4.21)

Shäffer and Strimmer proposed to use the James Stein type shrinkage estimator
(Efron and Morris (1973)) by shrinking the empirical correlation rij towards zero
and the empirical variance vi towards the median; i.e, if X is the centered data
with an unbiased empirical estimator of the covariance matrix

S = XTX
n− 1 , (4.22)

87



then the shrinkage estimate S∗ is

S∗ij = r∗ij
√
v∗i v
∗
j , (4.23)

where r∗ij = (1− λ̂∗1)rij,
v∗i = λ̂∗2vmedian + (1− λ̂∗2)vi,

(4.24)

such that 

λ̂∗1 = min

1,

∑
i 6=j

ˆvar(rij)∑
i6=j

r2
ij


λ̂∗2 = min

1,

p∑
i=1

ˆvar(rij)

p∑
i=1

(vi−vmedian)2


. (4.25)

Algorithm 5 Shrinkage Approach Algorithm.
1: Construct the augmented matrix ψ = [XPXF ];
2: Compute S = ψTψ and extract the two submatrices S1 = XT

PXP and S2 =
XPXF ;

3: Compute Âshrink = (S∗1)−1S∗2 ;
4: Find the p× p matrix of partial correlation coefficient ∼r = (∼rij) as in equation

4.31;
5: Compute the local fdr and delete the non-significant edges (fdr ≥ 0.2) by

replacing its weight by 0 to obtain the score (adjacent) matrix..

Shrinkage approach as shown in algorithm 5 starts by combining the centred
observation XP and XF using the joint matrix

ψ = [XPXF ] =


X1(1) . . . . . . Xp(1) X1(2) . . . . . . Xp(2)
X1(2) . . . . . . Xp(2) X1(3) . . . . . . Xp(3)

...
...

...
...

...
...

...
...

X1(n) . . . . . . Xp(n) X1(n− 1) . . . . . . Xp(n− 1)

 .
(4.26)

Note that the matrix ψ has dimension equal to (p− 1)× 2p. Then, the empirical
covariance is given by

S = ψTψ (4.27)
= (XPXF )T (XPXF ). (4.28)
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Also, note that S will be a matrix with dimension 2p × 2p and contain the four
submatrices as follows:

ψ =
XP XF[ ]XT
PXP XT

PXF XP

XT
FXP XT

FXF XF

,

where S1 = XT
PXP , and S2 = XT

PXF .
Based on that, the ordinary least square estimate of VAR coefficients is

ÂOLS = (S1)−1S2. (4.29)

Replacing the empirical covariance matrix S by a shrinkage estimate to get

ÂShrink = (S∗1)−1S∗2 . (4.30)

Instead of using a statistical test to identify the most significant coefficient in
ÂShrink, they test the corresponding partial correlation coefficients that study
the dependencies among the estimated coefficients.

Consider the successive fitting of VAR(1) model for each variable at time point
t+1 on all the variables at the previous time point t. Then the partial correlation
between the estimated regression coefficient (Whittaker (1990)) is

∼
rij = sign(â(j)

i )
√
â

(j)
i â

(i)
j , (4.31)

where â(i)
j denotes the estimated regression coefficient of the predictor variable

Xj for response Xi, and sign(â(j)
i ) is the sign of â(j)

i . After computing the p × p
partial correlations matrix, Schafer and Strimmer use the local false discovery
rate approach (fdr) (Efron (2007); Hotelling (1953)) to identify the significant
partial correlations. The edges are considered to be significant, if its local fdr is
less than 0.2.

4.8. Low order conditional dependence (G1DBN)
Lèbre (Lèbre (2009)) proposed an inference method for DBNs based on the

idea of a low order conditional dependence graph G1DBN. This approach is per-
formed in two steps. First, find the adjacent matrix by computing the first order
partial dependencies for the graph G(1) and choose the most significant edges
based on a user chosen parameter α1 (perform dimension reduction). This step
is performed using statistical tests. Consider fitting the VAR(1) model recursively
for each variable in next time over the variables on the past time as follows:
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Xi(t+ 1) = bijk + aij|kXj(t) + aik|jXk(t) + εijk, ∀i, j, k = 1, ..., p and j 6= k.
(4.32)

Then, measure the conditional dependence between the variables Xi(t + 1) and
Xj(t), given Xk(t), ∀i, j, k 6= j through testing the partial regression coefficient
aij|k

H0 : a(1)
ij|k = 0 H1 : a(1)

ij|k 6= 0,
â

(1)
ij|k

ˆvar(â(1)
ij|k)
∼ t(n− 4), (4.33)

where t(n− 4) is the student’s test with n− 4 degrees of freedom, and ˆvar(âij|k)
is the variance estimation for âij|k. The result of this step will be a score matrix
with p× p dimension with p-values pij entering from the above test such that

pij = max
i,j,k 6=j

pij|k. (4.34)

Note that the smallest p-values represent the most significant edges on G(1), de-
pending on the significant level α1. Moreover, pij 6= 0 means there is an arc from
node j to node i.

Second, in this step, the real structure G of DBN that reflects the relevant
dependence that exists in G(1) is learned. Model selections are performed using
standard estimation and tests over the edges of G(1). Here the number of parents
for each variable in G(1) must be less than n − 1 by controlling the value of α1.
Choosing the variables Xi(t + 1) that have parents less than n − 1 and test the
regression coefficients of the VAR(1) under significant level α2

Xi(t+ 1) = bi +
∑

j∈Pa(Xi(t+1),Ĝ(1))

a
(2)
ij Xj(t) + εij, (4.35)

H0 : a(2)
ij = 0 H1 : a(2)

ij 6= 0; (4.36)

note that

â
(2)
ij

ˆvar(â(2)
ij )
∼ t(n− 1− |Pa(Xi(t+ 1), Ĝ(1))|), (4.37)

where |Pa(Xi(t), Ĝ(1))| is the number of parents of Xi(t + 1) in Ĝ(1). The final
DAG will have edges with p-values scores equal to pij < α2.
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4.9. Statistical Inference for Modular Networks,
SIMoNe

Ambroise et.al. (Ambroise et al. (2009)) suggest an algorithm called SIMoNe
(Statistical Inference for Modular Networks) to estimate the non-zero entries
of the concentration matrix equivalent to reconstructing the Gaussian graphical
model. They assume a latent structure on the concentration matrix equivalent
to a hidden structure over the network (whose edges’ weights correspond to the
entries of the concentration matrix). Finally, they use an EM algorithm together
with a L1 norm to get the concentration matrix estimate.

Other approaches based in mutual information criterion were also proposed;
for details, see (Altay and Emmert-Streib (2010); Basso et al. (2005); Faith et al.
(2007); Meyer et al. (2007); Peng et al. (2005); Reverter and Chan (2008)).

In next chapter, we propose two new approaches for inferring dynamic graph-
ical networks: neighbourhood SVM (nSVM), and restricted Bayesian networks
(RBN).
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5. Graphical model for time series
using support vector machines

In this chapter, we consider modelling the interaction between a set of vari-
ables in the context of time series and high dimension. We suggest two ap-
proaches. The first is similar to the neighborhood lasso when the lasso model is
replaced by a support vector machine (SVM). The second is a restricted Bayesian
network adapted for time series. We show the efficiency of our approaches by
simulations using linear and nonlinear data set and a mixture of both.

SVMs) (Vapnik (1995)) may be used for regression and share many features
with the classification version. Suppose we have the training data set D =
{(x1, y1), ..., (xn, yn)} ⊂ Rp × R, p ≥ 1. In epsilon SVM regression (ε − SVM),
we aim to estimate a function f(x) that has at most ε deviation from the actually
obtained targets yi for all the training data. Let f be a linear functions with the
form

f(x) =< w, x > +b, w ∈ Rp, b ∈ R, (5.1)

ε−SVM solve the following optimization problem

minimize
w

1
2 ‖ w ‖

2 +C
n∑
i=1

(ζi + ζ∗i ),

subject to


yi− < w, xi > −b ≤ ε+ ζi

< w, xi > +b− yi ≤ ε+ ζ∗i
ζi, ζ

∗
i ≥ 0

,

(5.2)

where C > 0 is a constant that controls the penalty imposed on observations,
which lie outside the ε margin and prevent overfitting, and ζi, ζ

∗
i , are slake vari-

ables controlling the relaxation of the constrains. The linear ε-insensitive loss
function ignores errors that are within ε distance of the observed value by treat-
ing them as equal to zero. The loss function is a measure based on the distance
between the observed value y and the ε boundary

Lε =

0, |y − f(x)| ≤ ε

|y − f(x)| − ε, otherwise
. (5.3)

Solving the optimization problem (5.2) is done by solving its Lagrange dual for-
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mulation (Fletcher (1987); Mangasarian (1969); McCormick (1983)) and gives

w =
n∑
i=1

(αi − α∗i )xi, (5.4)

f(x) =
n∑
i=1

(αi − α∗i ) < xi, x > +b, (5.5)

where αi and α∗i are the Lagrange multipliers. The constant b can be computed
by the so-called Karush Kuhn Tucker (KKT) conditions (Kuhn and Tucker (1951);
Karush (1939)), which state that the point of solution of the product between
dual variables and constrains has to vanish

αi(ε+ ζi − yi+ < w, xi > +b) = 0,
α∗i (ε+ ζ∗i + yi− < w, xi > −b) = 0,

(C − αi)ζi = 0, (5.6)
(C − α∗i )ζ∗i = 0.

So w can be completely described as a linear combination of the training patterns
xi and the complexity of a function’s representation by support vectors. Also, it
depends on the number of support vectors but not on the dimension p.

In the case of nonlinear SVMs, the Lagrange dual formulation is extended to
a nonlinear function. The nonlinear SVM regression model can be obtained by
replacing the dot product term < xj, x >= xTj x with a nonlinear kernel function
K(x1, x2) =< φ(x1), φ(x2) >, where φ(x) is a transformation that maps x to a
high dimensional space. The common kernels are

K(Xi, Xj) =


Polynomial kernel = (k∗ < xi, xj > +const)d

Gaussian radial basis function = e−k
∗‖xi−xj‖2

Sigmod kernel = tanh(k∗ < xi, xj > +const)
, (5.7)

where k∗ is the kernel parameter; d is the degree of polynomial kernel, and const
is a random constant.
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Figure 5.1. – Approaches positions in linear, nonlinear simulation, and mixture of
both for p = 50, 100 and n = 20.
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5.1. Neighborhood Support vector machine,
(nSVM)

Following the idea of neighborhood lasso, we suggest a procedure here based
on p SVM regression models, where each variable observed at time point t + 1
plays the role of the output, and the other variables observed at previous time
point t are used as input variables. The difference from neighborhood lasso is
that the feature selection step is done separately. For each regression model, the
optimal subset of input variables is selected by a step-wise type procedure. First
input variables are ranked according to their decreasing order of importance.
The importance of variable Xj based on SVM is computed using ||w||(−j), (Cris-
tianini and Shawe-Taylor (2000); Rakotomamonjy (2003); Yu and Kim (2012);
Lin (2008)), which is the norm of the weight vector omitting its jth coordinate.
Once the input variables are ordered, we construct a sequence of embedded
models beginning with the most important variable and adding the others one
by one (Ishak (2007)). The mean square error (MSE) of each model is com-
puted by leave one out cross validation (LOOCV). The model minimises the MSE
that corresponds to the best subset selection of input variables, thus the optimal
neighbor. The algorithm is summarised in algorithm 6.

Algorithm 6 Neighborhood Support vector machine algorithm.
1: Let D be a data set; p is the number of features; error and Error be vectors

of MSE with length p ;
2: for ( j=1:p) do
3: Build a SVM model f for each response variable Xj(t+ 1) and predictor

variables X(t);
4: Compute the variable importance (VI) with respect to the SVM model;
5: Sort the variables according to their descending order of importance:
X(1)(t), ..., X(p)(t);

6: Partition D using LOOCV and let D−i = D\Di;
7: Initialize Error = 0
8: for ( i=1:n) do
9: for ( k=1:p) do

10: Mk
i = f(response = Xj(t), predictors = X(1)(t), ..., X(k)(t),D−i);

11: errorki = Test(Mk
i ,Di);

12: end for
13: Error = Error + errori;
14: end for
15: Error = 1

n
Error;

16: kopt = argmin
k
{Error}, where kopt is the optimal number of important

variables to keep in the model.
17: end for
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5.2. Restricted Bayesian Networks (RBN)
Our idea here is to use the classical static Bayesian network approach aug-

menting the data set by adding one time shift for each variable. Therefore,
we built a Bayesian network over the set of 2p variables (X1(t + 1), ..., Xp(t +
1), X1(t), ..., Xp(t)) constraining the network to satisfy the assumptions, as given
in section 4.1. Figure 4.1 illustrates these restrictions. There are no depen-
dencies within each time, and the arcs between times are only in one direction
(t→ t+ 1). Besides, the graph is acyclic.

X1(t) X1(t+ 1)

X2(t) X2(t+ 1)

×
×

×

× ××××

Figure 5.2. – Restricted dynamic Bayesian network, RDBN.

5.3. Experiments
In this section, we suggest three different simulation models for linear and

nonlinear time series and a mixture of both.

5.3.1. Simulation models
For the linear time series simulation, we use a first order vector autoregressive

model, VAR(1)

Xj(t+ 1) = AX(t) +B + εj, j = 1, ..., p, (5.8)

where t = 1, .., n, X(t) ∈ Rp and εi ∼ N (0, σ2). The matrix Ap×p represents the
true network structure. Its elements are chosen uniformly, fixing the true edges
proportion pi ∈ (0, 1) of non zeros entries. The vector B of intercepts is also
chosen uniformly. Details are given in algorithm 7 (Lèbre (2009); Opgen-Rhein
and Strimmer (2007)).

For nonlinear time series, we follow the simulation scheme given in (Fujita
et al. (2008))) and use the following transformations:

f1(X(t+ 1)) = sin(X(t))
f2(X(t+ 1)) = cos(X(t))
f3(X(t+ 1)) = 3

√
X2(t)− 2sin(X(t))

. (5.9)
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The initial values X(1) ∈ Rp are drawn randomly using standard Gaussian dis-
tribution with zero mean and variance σ2.

The p nonlinear functions are drawn randomly from the above transformations
(equation 5.9) and applied to each dimension of X at time t. A matrix A as gen-
erated in the linear case is applied after nonlinear transformation. The process
is described in algorithm 8.

To mix the linear and nonlinear simulation, we use the following set of trans-
formations: 

f4(X(t+ 1)) = sin(X(t))
f5(X(t+ 1)) = 1

2X(t)
f6(X(t+ 1)) = 3

√
X2(t)− 2sin(X(t))

f7(X(t+ 1)) = −0.8X(t)

, (5.10)

Then, we proceed exactly like in the nonlinear case.
To test the performance of our approaches, we compared the efficiency of

neighborhood support vector machines approach (nSVM) and restricted Bayesian
networks approach (RBN) with first order dependencies approach (G1DBN) (Lèbre
(2009)), shrinkage to large scale covariance matrix estimation approach (Genenet)
(Schäfer and Strimmer (2005c); Opgen-Rhein and Strimmer (2007)), and neigh-
borhood lasso approach (nlasso) (Meinshausen and Bühlmann (2006)). Support
vector machines depend on two parameters k∗ and C = cost, which are the ker-
nel parameter and the constant of regularisation in the Lagrange formulation,
respectively. These parameters are tuned and compared with their default val-
ues, k∗ = 1/p and C = 1, to choose the best performance (Karatzoglou et al.
(2006)). The range of k∗ and C are chosen respectively to be from 10−6 to 10−1

and from 101 to 106. Also, for polynomial kernel, the parameter d is tuned to
choose the best degree within d = {1, .., 5}.

5.4. Results
We now compare the different approaches described above; G1(S1 and S2)

that correspond to the two steps of G1DBN approach, neighborhood lasso (nlasso)
approach, the Genenet approach with our approaches restricted Bayesian net-
work approach (RBN), and neighborhood SVM approach with different kernels;
linear (L), radial (R), sigmod (S), and polynomial (P).

For these comparisons, we compute the true positive rate (TPR), false positive
rate (FPR), true negative rate (TNR), and false negative rate (FNR) defined in
equation 5.13 and average their values over 100 runs.
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Algorithm 7 Simulation of linear networks.
1: Let X = Zerop×n the p-dimensional time series initialised to zero; n the number

of instances; pi ∈ (0, 1) the true edges proportion; A = Zerop×p the adjacency
matrix that represents the simulated graph (initialized to zero); B the intercept
term; εi a white noise with zero mean and variance equal to σ2; and nEdges
the number of nonzero edges in the network;

2: nEdges=bp2 × pic;
3: Select randomly the nonzero edges in A from p2 edges;
4: Fill the nonzero edges in A = (aij) uniformly;
5: Define the true network

Tnet =

1, if aij 6= 0
0, if aij = 0

; (5.11)

6: Draw the intercept term B and the variance σ2 uniformly;
7: Draw the initial value X(1) normally with zero mean and variance equal to σ2;
8: for (i=2:n) do

X(i) = AX(i− 1) +B + εi, ; where εi ∼ N (0, σ2)
9: end for

10: XT is the simulated times series.

TPR = TP

TP + FN
, FPR = FP

FP + TN

TNR = TN

TN + FP
, FNR = FN

FN + TP

(5.13)

Table 5.1, 5.2 and 5.3 present the results for the linear, nonlinear, and mixture
cases respectively for two values of p (p = 50, p = 100) and n being fixed to 20.

As expected in all cases, the performances decrease for high dimensions (p =
100) and is quite good for all the methods in the linear case. The worst perfor-
mance for all the method is observed in the nonlinear case. Given the low rate
(5%) of edges present in the true network, the hardest task is to retrieve these
edges thus to get high TPRs. High values of TNR are quite easy to achieve and
correspond systematically to low values of the MCE rates.

The nSVM is the only approach where TPR is above 50%. As there is no global
index to measure fairly the performances of these approaches, we try in general
to have a good trade off between TPR and TNR.

Figure 5.1 shows the position of the approaches we have compared in the
space (TPR-TNR).

For the linear results, Table 5.1 shows that the average number of edges that
are correctly included into the estimate of the edge set is high in nSVM-S, nlasso,
nSVM-L, nSVM-R, and RBN, respectively, when p = 50. These high average
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Algorithm 8 Simulation of nonlinear and mixture networks.
1: Let X = Zerop×n be the p-dimensional time series initialized to zero ; n the

number of instances; pi ∈ (0, 1) the true edges proportion; A = Zerop×p the
adjacency matrix that represents the simulated graph (initialized to zero); εi a
white noise with zero mean and variance equal to σ2; and nEdges the number
of nonzero edges in the network;

2: nEdges=bp2 × pic;
3: Select randomly the nonzero edges in A from p2 edges;
4: Fill the nonzero edges in A = (aij) uniformly;
5: Define the true network

Tnet =

1, if aij 6= 0
0, if aij = 0

; (5.12)

6: Choose the transformation function fj randomly from equation 5.9 or equation
5.10 for each variable.

7: Draw the initial value X[, 1] normally with zero mean and random variance
and set X[, 1] = 2× sin(X[, 1])

8: for ( i=2:p) do
9: for ( j=1:p) do

X[j, i] = fj(X[j, i− 1])
10: end for

X[, i] = A×X[, i] + εi, ; where εi ∼ (0, σ2)
11: end for
12: XT is the simulated times series.

values also correspond to high average values of edges that are not correctly
included into the estimate of the edge set and to low average values of misclas-
sification error; this is obvious from the dots in the upper right-hand side square
in figure 5.1a with red color .

When p = 100, the average number of edges that are correctly included and
not included into the estimate of the edge set breaks down in the RBN approach
and is out of performance, but still significant in nSVM-S, nSVM-L, nSVM-R, and
nlasso, respectively; see the blue dots in the upper right-hand side square in
figure 5.1a.

In nonlinear simulation, nSVM still gives highly significant results in both
cases, when p = 50 or p = 100. Note that the average number of edges that
are correctly included and not included into the estimate of the edge set when
p = 50 is high and close to its corresponds one when p = 100 in nSVM with
sigmod kernel which shows the stability of the results that are function of the
number of variables p. See the red and blue dots in the upper right-hand side
square in figure 5.1b.
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Number of variables p = 50
G1-S1 G1-S2 Gennet nlasso RBN nSVM-L nSVM-R nSVM-S nSVM-P

TPR 0.51 0.47 0.11 0.70 0.65 0.71 0.69 0.73 0.86
FPR 0.15 0.11 0.01 0.17 0.17 0.22 0.25 0.33 0.68
TNR 0.85 0.89 0.99 0.83 0.83 0.78 0.75 0.67 0.32
FNR 0.49 0.53 0.89 0.30 0.35 0.29 0.31 0.27 0.14
MCE 0.17 0.13 0.05 0.18 0.18 0.23 0.25 0.33 0.66

Number of variables p = 100
TPR 0.26 0.21 0.12 0.52 0.39 0.53 0.53 0.55 0.78
FPR 0.11 0.07 0.01 0.12 0.13 0.18 0.20 0.22 0.72
TNR 0.89 0.93 0.99 0.88 0.87 0.82 0.80 0.78 0.28
FNR 0.74 0.79 0.88 0.48 0.61 0.47 0.47 0.45 0.22
MCE 0.14 0.11 0.06 0.14 0.16 0.19 0.22 0.23 0.69

Table 5.1. – Linear simulated data, p=50, 100, n=20, pi=0.05, the last four
columns correspond to the neighborhood SVM approach (nSVM) us-
ing different kernels (L: Linear, R: Radial, S: Sigmod, P: Polynomial).

In Table 5.3, which is the simulated results of mixture linear and nonlinear
time series data, nSVM approach also gives highly significant results in both
cases of different number of variables, especially in nSVM-S. On the other side,
RBN and G1-S1 break down when the number of variables increase. See the red
and blue dots in the upper right hand side square in figure 5.1c.

In all the simulations, the MCE decreases as the number of variables increase.
Moreover, nSVM approach, especially SVM-S, shows the best performance in
finding the most correct edges that are included into the estimate of the edge
set. RBN is sensitive to the linearity assumption and the number of variables,
especially when it is higher than the number of instances; this is due to the
likelihood function that used to estimate the network.
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Number of variables p = 50
G1-S1 G1-S2 Gennet nlasso RBN nSVM-L nSVM-R nSVM-S nSVM-P

TPR 0.49 0.39 0.24 0.31 0.47 0.56 0.51 0.55 0.66
FPR 0.22 0.16 0.04 0.10 0.31 0.35 0.28 0.34 0.52
TNR 0.78 0.84 0.96 0.90 0.69 0.65 0.72 0.66 0.48
FNR 0.51 0.61 0.76 0.69 0.53 0.44 0.49 0.45 0.34
MCE 0.24 0.18 0.07 0.13 0.32 0.35 0.29 0.35 0.51

Number of variables p = 100
TPR 0.43 0.29 0.17 0.29 0.32 0.49 0.48 0.53 0.67
FPR 0.17 0.07 0.03 0.07 0.16 0.23 0.22 0.30 0.52
TNR 0.83 0.93 0.97 0.93 0.84 0.77 0.78 0.70 0.48
FNR 0.57 0.71 0.83 0.71 0.68 0.51 0.52 0.47 0.33
MCE 0.19 0.10 0.07 0.10 0.19 0.24 0.24 0.31 0.52

Table 5.2. – Noninear simulated data, p=50, 100, n=20, pi=0.05, the last four
columns correspond to the neighborhood SVM approach (nSVM) us-
ing different kernels (L: Linear, R: Radial, S: Sigmod, P: Polynomial).

Number of variables p = 50
G1-S1 G1-S2 Gennet nlasso RBN nSVM-L nSVM-R nSVM-S nSVM-P

TPR 0.61 0.49 0.33 0.42 0.54 0.66 0.60 0.64 0.76
FPR 0.24 0.16 0.03 0.11 0.32 0.34 0.27 0.33 0.54
TNR 0.76 0.84 0.97 0.89 0.68 0.66 0.73 0.67 0.46
FNR 0.39 0.51 0.67 0.58 0.46 0.34 0.40 0.36 0.24
MCE 0.25 0.18 0.07 0.13 0.33 0.34 0.28 0.34 0.53

Number of variables p = 100
TPR 0.46 0.31 0.14 0.34 0.34 0.53 0.51 0.56 0.66
FPR 0.17 0.07 0.02 0.07 0.16 0.22 0.22 0.29 0.49
TNR 0.83 0.93 0.98 0.93 0.84 0.78 0.78 0.71 0.51
FNR 0.54 0.69 0.86 0.66 0.66 0.47 0.49 0.44 0.34
MCE 0.19 0.10 0.06 0.10 0.19 0.24 0.23 0.30 0.48

Table 5.3. – Linear and nonlinear simulated data, p=50, 100, n=20, pi=0.05, the
last four columns correspond to the neighborhood SVM approach
(nSVM) using different kernels (L: Linear, R: Radial, S: Sigmod, P:
Polynomial).
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6. Conclusion and Perspectives

Conclusion
In this dissertation, we have shown that Bayesian networks classifiers are very

accurate models when compared to other classical machine learning methods.
Discretising input variables often increases the performance of Bayesian net-
works classifiers, so does a feature selection procedure. This is probably due to
the fact that discrete Bayesian networks are less sensitive to the underlying dis-
tribution of the data and are easier to estimate in low dimensions. One specific
advantage of Bayesian networks classifiers is that they directly estimate the dis-
tribution of the data and take into account the high-order interactions between
the variables. The models may also be graphically presented.

SVM criterion is an efficient approach for finding the interaction points to
approximate the structure of the data sets. The ability to use different types of
kernels allow SVMs to find the best active sets that construct the model according
to the types of the input data. Also, SVM is not much sensitive to the number of
variables inserted, as we have shown in nSVM-S.

Perspectives
First, future work should aim to use a more specific discretisation approach,

preserving the dependencies structure within the original data and including
the latent variables accounting for hidden clusters in the data to obtain more
accurate results on classification using Bayesian networks.

Second, further work should aim to apply the results obtained from our ap-
proaches applied to infer interactions networks on gene expression data and
compare it with approximate true structures.
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tion to epilepsy type prediction using PET scan data. In 2016 15th IEEE In-
ternational Conference on Machine Learning and Applications (ICMLA),
pages 965–970.

2. Jebreen, K. and Ghattas, B. (2017). Inferring linear and nonlinear Interac-
tion networks using neighborhood support vector machines, ICMLA, CAN-
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