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CHAPTER 1

Introduction

1. Geometric structures and locally homogeneous triples. Motivation

The concept of model geometry introduced by William Thurston [Th] plays a
fundamental role in modern Differential Geometry:

Definition 1.1. An n-dimensional model geometry is a pair

(X,α : G×X → X) ,

where X is a simply connected n-dimensional manifold, G is a Lie group, and α is
an effective, transitive action with compact stabilizers.

The condition on the compactness of the stabilizers has an important conse-
quence:

Remark 1.2. Let (X,α : G×X → X) be a model geometry. Then X has an
α-invariant Riemannian metric. Any such a metric is homogeneous, in particular
complete.

Many authors implicitly require that G is connected. Under this assumption it
follows that all the stabilizers Gx, x ∈M are also connected [Fi, Proposition 1.1.1].

We will not adopt this convention, but (since we focus on geometric structures
on orientable manifolds) we will assume that G acts by orientation preserving dif-
feomorphisms.

We have a natural notion of isomorphism (equivalence) between two geome-
tries (see [Sc, p. 474]). A fundamental problem in the theory of geometric struc-
tures is the classification of n-dimensional geometries, for a given dimension n, up
to equivalence.

Let (X,α : G×X → X), (X,α′ : G′ ×X → X) be two model geometries with
the same underlying manifold X. We say that (X,α′ : G′ ×X → X) is larger than
(X,α : G×X → X) (or (X,α : G×X → X) is contained in (X,α′ : G′×X → X)),
if G is a Lie subgroup of G′ and α is the restriction of α′ to G × X. A geometry
(X,α : G×X → X) is called maximal if, for any larger geometry (X,α′ : G′×X →
X), one has G = G′. Any model geometry (X,α : G × X → X) is contained in a
maximal geometry [Fi, Proposition 1.1.2].

Let (X,α : G × X → X) be an n-dimensional model geometry, and Gα be
the pseudogroup of transformations of X which are restrictions (to open sets) of
diffeomorphisms αg : X → X.

Definition 1.3. Let (X,α : G×X → X) be an n-dimensional model geometry,
and M be a differentiable n-manifold. A geometric (X,α)-structure on M is a
differentiable Gα-structure on M , i.e. a maximal Gα-atlas A on M .

A differentiable manifold which admits a geometric (X,α)-structure will be
called (X,α)-geometric manifold. Note that
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10 1. INTRODUCTION

Remark 1.4. Let (X,α : G × X → X) be a model geometry. The following
conditions are equivalent:

(1) G has a discrete group Γ such that the right coset space Γ\G is compact.
(2) G has a discrete group Γ such that X/Γ is compact.
(3) There exist compact (X,α)-geometric manifolds.

Since in this thesis we are interested in the class of compact geometric mani-
folds, the model geometries satisfying these three equivalent conditions will play an
important role. Such a model geometry will be called model geometry with compact
quotients.

Fixing an α-invariant Riemannian metric g on X (see Remark 1.2), we see
that (X,α)-structure A on M yields a Riemannian metric gA on M which is locally
homogeneous, i.e., for any pair (x, x′) ∈ M ×M there exists open neighborhoods
U 3 x, U ′ 3 x′ and an isometry ϕ : U → U ′ with ϕ(x) = x′.

Conversely, any compact locally homogeneous Riemannian manifold is geomet-
ric. More precisely:

Remark 1.5. Let (M, g) be a compact, connected, orientable, locally homoge-

neous Riemannian manifold, and π : M̃ → M be its universal cover. There exists
a model geometry (M̃, α : G× M̃ → M̃) and a geometric (M̃, α)-structure on M .

This is a well-known, classical result in the theory of geometric manifolds.
Since the strategy of the proof will play an important role in this thesis, we ex-
plain briefly the argument: Putting g̃ := π∗g, we obtain a complete, simply con-
nected Riemannian manifold (M̃, g̃), which will also be locally homogeneous. A
well known theorem of Ambrose-Singer [AS], [Si] implies that (M̃, g̃) is homo-
geneous, in particular M̃ admits a connected transitive group of isometries. In
particular the group Iso+(M̃, g̃) of orientation preserving diffeomorphisms will act
transitively on M̃ , and the obtained pair (M̃, α : Iso+(M̃, g̃) × M̃ → M̃) will be a
model geometry, and M obviously has a geometric (M̃, α)-structure.

We emphasize the crucial role of Ambrose-Singer’s theorem in this proof. It is
easy to prove that a real analytic locally homogeneous, complete, simply connected
Riemannian manifold is homogeneous. This follows from [KN, Theorem 6.3]. The
statement also holds in the differentiable category, but the proof, due to Ambrose-
Singer, is much more difficult (see section 2 in Chapter 5). We will come back later
to this important detail, and the role of Ambrose-Singer’s techniques in our thesis.

Remark 1.6. In general the model geometry given by Remark 1.5 is not max-
imal. Therefore, in general a locally homogeneous metric on a compact manifold
M might not be induced by a geometric structure associated with a maximal ge-
ometry with underlying manifold M̃ . For instance the Berger metrics [Be] on S3

are locally homogenous, but (excepting the standard constant curvature metrics)
are not induced by a geometric structure associated with a maximal geometry.

A Berger metric on S3 can be constructed using a constant curvature metric
on S2, and a homogeneous connection on the Hopf bundle S3 → S2, which is
a principal S1-bundle on S2. One of the goals of this thesis is to generalize this
construction, and to prove effective results on the classification of locally homo-
geneous (geometric) compact manifolds obtained using connections on principal
bundles over a given geometric base. The main concept introduced and studied in
this thesis is
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Definition 1.7. Let M be a differentiable manifold and K a Lie group. A
locally homogeneous triple with structure group K on M is a triple (g, P

p−→ M,A),
where p : P → M is a principal K-bundle on M , g is Riemannian metric on M ,
and A is connection on P such that the following locally homogeneity condition is
satisfied: for every two points x, x′ ∈ M there exists an isometry ϕ : U → U ′

between open neighborhoods U 3 x, U ′ 3 x′ with ϕ(x) = x′, and a ϕ-covering
bundle isomorphism Φ : PU → PU ′ such that Φ∗(AU ′) = AU .

In these formulae, for an open set U ⊂ M , we use the subscript U to denote
the restriction of the indicated objects to U . For connections on principal bundles
we adopt the conventions of [KN], so in Definition 1.7 the symbol A stands for a
K-invariant horizontal distribution of P . We will denote by VP ⊂ TP the vertical
distribution of P .

Fix now an inner product ⟪·, ·⟫ on the Lie algebra k of K, and let gA be the
Riemannian metric on P characterized by the conditions

(1) The canonical bundle isomorphism VP ' P × k is an orthogonal bundle
isomorphism with respect to the inner products defined by gA and ⟪·, ·⟫.

(2) The restriction of p∗ to the subbundle A ⊂ TP gives an orthogonal bundle
isomorphism A→ p∗(TM ),

(3) The direct sum decomposition TP = A ⊕ VP of the tangent bundle TP is
gA-orthogonal.

The following remark gives the motivation for introducing and studying locally
homogeneous triples:

Remark 1.8. Let (g, P
p−→ M,A) be a locally homogeneous triple with struc-

ture group K, and let ⟪·, ·⟫ be an ad-invariant inner product on k. Then gA is a
locally homogeneous Riemannian metric on P .

We are interested in the important case when K is compact. In this case an
ad-invariant inner product ⟪·, ·⟫ on k exists and, according to Remark 1.5, the total
space P will be a geometric compact manifold. Therefore a locally homogeneous
triple with compact structure group K gives a geometric principal bundle over a
geometric base; this justifies the title of our thesis.

The class of geometric manifolds obtained using locally homogeneous triples is
larger than one might think: recall that in dimension 3 there exists (up to equiv-
alence) eight maximal model geometries which admit compact quotients: E3, S3,
H3, S2 × R, H2 × R, S̃L2(R), Nil and Sol. We refer to [Th], [Sc] for the explicit
description of the pair (X,α) corresponding to each symbol above.

Excepting H3 and Sol, for any model geometry (X,α) in this list there exist
compact 3-manifolds with a geometric (X,α)-structure which are associated with
locally homogeneous triples with structure group S1. For instance any non-trivial
S1-bundle over a Riemann surface of genus g has a geometric (X,α)-structure,
where

(1) (X,α) = S3 when g = 0,
(2) (X,α) = Nil when g = 1,

(3) (X,α) = S̃L2(R) when g ≥ 2.
The trivial S1-bundles over Riemann surfaces have geometric structures with

model geometry S2 × R, E3, or H2 × R. Moreover any S1-bundle over a Riemann
surface has a geometric metric which is associated with a locally homogeneous
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triple in the sense of Definition 1.7. These examples shows the abundance of geo-
metric principal bundles in the class of geometric manifolds.

At the end of this introductory section we explain the motivations behind our
interest in locally homogeneous triples and their classifcation:

(1) Locally homogeneous triples give a large class of interesting geometric
manifolds in any dimension.

(2) The classification of locally homogeneous triples with fixed structure group
K on a given base M leads to interesting moduli spaces, so it is related to
gauge theory.

(3) The methods used in chapter 2, in which we give an infinitesimal charac-
terization of the homogeneity condition for triples, are very general and
can be used for the classification of other classes of locally homogenous
structures on manifolds, e.g. for locally homogenous triples consisting of
a Riemannian metric, a Spinc-structure and a spinor.

2. Preliminary definitions and notations

Let (N,h) be a Riemannian manifold, and let G ⊂ Iso(N,h) be a closed sub-
group of the group Iso(N,h) of isometries of (N,h). Let K be a compact Lie group,
and q : Q → N be a principal K-bundle on N . The group of G-covering bundle
isomorphisms of Q is defined by

GG(Q) := {(Φ, ϕ)| ϕ ∈ G, Φ : Q→ Q is a ϕ-covering bundle isomorphism }.

The group GG(Q) has a natural topology (induced by the weak C∞-topology [Hi,
section 2.1]), and fits in the short exact sequence

{1} → G(Q)→ GG(Q)
p−→ G→ {1},

where G(Q) is the gauge group of Q [DK], [Te], i.e. the group of id-covering
bundle automorphisms of Q. Let now Γ ⊂ G be a subgroup of G acting properly
discontinuously on N . The quotient M := N/Γ comes with a natural Riemannian
metric, such that the canonical projection π : N → M becomes a locally isometric
covering projection. Denote by g this Riemannian metric on M induced by h via π.

Suppose now the group epimorphism p−1(Γ)→ Γ has a right inverse, i.e. that
there exists a group morphism j : Γ→ GG(Q) such that p◦ j = ιΓ, where ιΓ : Γ→ G
is the inclusion monomorphism. If this is the case, we will obtain the commutative
diagram

{1} - G(Q) - GG(Q)
p- G - {1}

Γ

ιΓ
∪

6
�

j . (1)

The group Γ acts (via j) on Q by bundle isomorphisms, and the quotient P := Q/Γ
will be a principal K-bundle on the quotient manifold M .

Let now B be a connection on Q satisfying the following invariance condition:

Any element ϕ ∈ G has a lift in GG(Q) which leaves B invariant. (CG)

In this case we obtain a short exact sequence

{1} → GB(Q)→ GBG (Q)
pB−−→ G→ {1} ,
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where GB(Q) (GBG (Q)) is the stabilizer of B in the gauge group G(Q) (respectively
in the group GG(Q)). If, moreover, we can find a lift j : Γ→ GBG (Q) of the inclusion
monomorphism ιΓ : Γ→ G, we will obtain the diagram

{1} - GB(Q) - GBG (Q)
pB- G - {1}

Γ

ιΓ
∪

6
�

j
, (2)

and the quotient bundle p : P = Q/Γ → N/Γ = M will come with an induced
connection, which will be denoted by A.

Definition 2.1. The triple (g, P
p−→ M,A) obtained in this way will be called

the Γ-quotient of (h,Q
q−→ N,B) associated with the lift j : Γ→ GBG (Q) of pB.

Note that condition (CG) has an important gauge theoretical interpretation (see
[BiTe] for details): Let B(Q) := A(Q)/G(Q) be the moduli space of all connections
on Q, where A(Q) denotes the space of connections on Q. A connection B′ on
a principal K-bundle Q′ ' Q yields a well defined element [B′] ∈ B(Q) in the
following way: we chose a bundle isomorphism ψ : Q → Q′, and we put [B] :=
G(Q) · ψ∗(B′). This gauge class will be independent of ψ. On the other hand, since
G is connected, we have ϕ∗(Q) ' Q for any ϕ ∈ G. Therefore, for any B ∈ A(Q)
and any ϕ ∈ G, the pull-back connection ϕ∗(B) ∈ A(ϕ∗(Q)) defines a gauge class
ϕ∗[B] ∈ B(Q). In other words, we obtain a well-defined action of G on the moduli
space B(Q).

Remark 2.2. A connection B ∈ A(Q) satisfies condition (CG) if and only if
the gauge class [B] ∈ B(Q) is G-invariant.

Remark 2.3. If G acts transitively on N , then

• The pair (Q,B) is homogeneous with respect to the Lie group GBG (Q).
This Lie group is an extension of G by the compact group GB(Q) (which
is isomorphic to a closed subgroup of K).

• The quotient triple (g, P
p−→ M,A) is locally homogeneous.

The first goal of this thesis is to prove that, under certain (very general) condi-
tions, all locally homogeneous triples can be obtained in this way. More precisely,
any locally homogeneous triple on M can be obtained as the quotient of a homo-
geneous triple on M̃ . Then we will use this result to obtain explicit classification
theorems for locally homogeneous triples.

3. The approach. Presentation of results

Our method for the classification of locally homogeneous triples on compact
manifolds has two main steps:
(S1) Prove that any locally homogeneous triple on M is obtained as a quotient of a

globally homogeneous triple on the universal cover M̃ .
(S2) Use Biswas-Teleman’s description [BiTe] of the moduli space of homogeneous

connections on a manifold endowed with a transitive action.
(S1) The first step is a special application of the following natural, general idea:

reduce the classification of a class of locally homogeneous objects on M to the clas-
sification of a class of (globally) homogeneous objects on the universal cover M̃ .
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Suppose for instance that M is compact, and g is a locally homogeneous Riemann-
ian metric on M . Then the induced metric g̃ on M̃ will be locally homogeneous
and complete, hence homogeneous by the well-known theorem of Ambrose-Singer
mentioned above. Therefore, using the correspondence g 7→ g̃, the classification
of locally homogeneous Riemannian metrics g on M reduces to the classification
of homogeneous metrics g̃ on M̃ for which the isometry group Iso(M̃, g̃) contains
the covering transformation group of the universal cover M̃ → M . We will prove
a similar result for locally homogeneous triples. Let π : M̃ → M be the universal
cover of M , and let Γ be the corresponding covering transformation group,

Theorem 3.1. Let M be a compact manifold, and K be a compact Lie group.
Let π : M̃ → M be the universal cover of M , Γ be the corresponding covering
transformation group. Then, for any locally homogeneous triple (g, P

p−→ M,A)
with structure group K on M there exists

(1) A connection B on the pull-back bundle Q := π∗(P ).

(2) A closed subgroup G ⊂ Iso(M̃, π∗(g)) acting transitively on M̃ which con-
tains Γ and leaves invariant the gauge class [B] ∈ B(Q).

(3) A lift j : Γ → GBG (Q) of the inclusion monomorphism ιΓ : Γ → G, where
GBG (Q) stands for the group of automorphisms of (Q,B) which lift trans-
formations in G.

(4) An isomorphism between the Γ-quotient of (π∗(g), Q,B) and the initial

triple (g, P
p−→ M,A).

Therefore, any locally homogeneous triple on M is the quotient of a globally
homogeneous triple on the universal cover M̃ .

(S2) The group Ĝ := GBG (Q) whose existence is given by Theorem 3.1 is a Lie
group which fits in the short exact sequence

{1} → GB(Q)→ GBG (Q)
pB−−→ G→ {1}, (3)

where GB(Q) is the stabilizer of B in the gauge group G(Q) of Q. The connection
B is GB(Q)-homogeneous and, in principle, one can use the results of [BiTe] for
the classification of homogeneous connections.

Remark 3.2. An important difficulty arise: one has first to classify all possible
Lie groups Ĝ, admitting G as a quotient, which intervene in an exact sequence of
the form (3). In other words the pull-back pairs (Q,B) we want to classify are not

necessarily G-homogeneous, but homogeneous with respect to an extension Ĝ of G.

Fixing a point y0 ∈ Q the stabilizer GB(Q) can be identified with a closed
subgroup L ⊂ K, and the conjugacy class of L is independent of y0. This conju-
gacy class will be called the conjugacy class associated with (the stabilizer of) the
connection B.

It is important to point out that only a very small class of conjugacy classes
of closed subgroups of K are associated with connections in principal K-bundles.
The reason is the following: the stabiliser of a connection B is the centralizer of its
holonomy subgroup (see section 5.1.4). Therefore, if L ⊂ K is associated with (the
stabilizer of) B, then it coincides with the centralizer of Lie subgroup of K. Such a
subgroup of K, and also its conjugacy class, will be called admissible. For instance
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Example 3.1. For K = SU(2) we have only three admissible conjugacy classes
of subgroups: the class of the center Z(SU(2)) = {±I2}, the conjugacy class of a
maximal torus of SU(2) (which is isomorphic to S1), and the conjugacy class of
SU(2).

For K = SO(3) we have five admissible conjugacy classes: the conjugacy class
of the trivial subgroup, the conjugacy class of a subgroup isomorphic to O(1) = µ2,
the conjugacy class of a maximal torus of SO(3), the conjugacy class of a subgroup
isomorphic to O(2), and the conjugacy class of SO(3).

For an arbitrary compact Lie group K, the minimal admissible conjugacy class
is {Z(K)}, and the maximal admissible conjugacy class is {K}. If the stabiliser of
a connection A is minimal (coincides with Z(K)) A is called irreducible.

Our method for the classification of locally homogeneous triples on an ori-
entable, compact, connected manifold M consists of the following:

(1) Classify all homogeneous metrics g̃ on M̃ admitting a closed, group of
orientation-preserving isometries G ⊂ Iso+(g̃, M̃) which acts transitively
on M̃ and contains Γ. In many interesting cases these conditions imply
G = Iso+(g̃, M̃) (see section 1.1 Ch. 4).

(2) For any pair (g̃, G) as above classify all Lie group extensions

{1} → L→ Ĝ→ G→ {1} , (4)

where L is an admissible subgroup of K, and all lifts j : Γ → Ĝ of the
embedding ιΓ : Γ→ G.

(3) For any such extension classify, up to isomorphism, all Ĝ-homogeneous
pairs (Q,B) on M̃ . This classification is obtained using Biswas-Teleman
theorem [BiTe, Theorem 12]. Select the Ĝ-homogeneous pairs (Q,B)

whose stabilizer is L, and such that Ĝ acts effectively on Q.
For any Lie group extension of the form (4) we obtain a family of triples

(j, Q,B), where j : Γ → Ĝ is a lift of ιΓ, and (Q,B) is a Ĝ-homogeneous pair
on M̃ . Any such triple yields a locally homogeneous triple (g, P,A) obtained as the
Γ-quotient of (Q,B) via j. The main Theorem 3.1 shows that all locally homoge-
neous triples on M can be obtained in this way. We will illustrate our method for
the classification of locally homogeneous triples with structure groups S1, PU(2) on
hyperbolic Riemann surfaces. We will see that:
(C1) The isomorphism classes of locally homogeneous S1-triples with fixed Chern

class c1(P ) = c correspond bijectively to the points of the corresponding
moduli space of Yang-Mills connection (which is a torus of dimension 2g).

(C2) The isomorphism classes of locally homogeneous PU(2)-triples (g, P,A) with
A flat, correspond bijectively to the points of the space of conjugacy classes
of representations π1(M)→ PU(2)

(C3) The isomorphism classes of locally homogeneous PU(2)-triples (g, P,A) with
π∗(A) irreducible can be identified with (0,∞).

The PU(2)-triples given by the third statement have not been considered in
the literature before (to our knowledge). This leads to interesting locally homo-
geneous (hence geometric) 5-dimensional manifolds, which are fibre bundles over
hyperbolic Riemann surfaces. We will come back to these family of triples in future
research. One can ask interesting questions about these triples, for instance: study
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the Ricci flow on these geometric 5-dimensional manifolds.

The thesis is organized as follows: In Chapter 2 we prove Theorem 3.1 in the
general framework of C∞ triples. The proof is based on the following characteriza-
tion of locally homogeneous triples:

Theorem 3.3. Let M be a connected manifold, (g, P
p−→ M,A0) be a triple

consisting of a Riemannian metric g on M , a principal K-bundle P on M , and a
connection A0 on P . Denote by C0 ∈ A(O(M)) the Levi-Civita connection on the
orthonormal frame bundle O(M) of (M, g). The following conditions are equivalent:

(1) (g, P
p−→ M,A0) is locally homogeneous.

(2) (g, P
p−→ M,A0) is infinitesimally homogeneous.

(3) There exists a pair (C,A) ∈ A(O(M))×A(P ) such that

∇CRC = 0, ∇CTC = 0, ∇CAFA = 0, ∇CA(A−A0) = 0 .

In this statement we have denoted by RC (TC) the curvature (torsion) of the
connection C on O(M), and by FA the curvature of the connection A on P . The
concept of infinitesimally homogeneity for triples is inspired by Singer’s notion of
infinitesimally homogeneous Riemannian metrics [Si], [NT]. Taking into account
the role of Singer’s indeas in our thesis, we inserted a section in the Appendix in
which we explain briefly the method of proof of this important result.

In Chapter 3 we give a (much simpler) proof of Theorem 3.1 in the real-analytic
framework. The main idea in this chapter is to reduce the problem of extending
bundle morphisms, which are compatible with a pair of connections, to an exten-
sion problem for parallel sections.

In Chapter 4 we make use of our main theorem to classify locally homogeneous
triples on hyperbolic Riemann surfaces.

Chapter 5 is an appendix containing definitions and results used in our proofs.
The results presented in the appendix are known, of general interest, but not easily
available in the literature.



CHAPTER 2

Locally homogeneous and homogeneous triples. The
differentiable case

1. Infinitesimally homogeneous sections in associated bundles

Let M be a differentiable n-manifold, and L(M) be its frame bundle. Let K̂
be a Lie group, k̂ its Lie algebra, r : K̂ → GL(n) be a morphism of Lie groups,
π : P̂ →M be a principal K̂-bundle1 over M , and f : P̂ → L(M) be an r-morphism
of principal bundles.

Let V be a finite dimensional vector space, ρ : K̂ → GL(V ) be a morphism of
Lie groups, and E := P̂ ×ρ V be the associated vector bundle. Put

Wijpq := (Rn)⊗i ⊗ (Rn∗)⊗j ⊗ V ⊗p ⊗ V ∗⊗q ,
and let

R : K̂ → GL(Wijpq)

be the linear representation induced by r and ρ. The corresponding infinitesimal
action k̂→ gl(Wijpq) defines a K̂-invariant pairing

K̂ ×Wijpq →Wijpq , (5)

which induces a paring of associated vector bundles

ad(P̂ )×
(
T⊗iM ⊗ (Λ1

M )⊗j ⊗ E⊗p ⊗ E⊗∗q
)
→ T⊗iM ⊗ (Λ1

M )⊗j ⊗ E⊗p ⊗ E⊗∗q (6)

The pairings (5), (6) will be denoted by (b, η) 7→ b · η to save on notations. For
instance, the pairing

ad(P̂ )×M
(
{Λ1

M}⊗j ⊗ E
) ·−→ {Λ1

M}⊗j ⊗ E (7)

is given by the formula

(b · η)(w1, . . . , wj) := b ·
(
η(w1, . . . , wj))−

j∑
i=1

η(w1, . . . , b · wi, . . . , wj) .

The fact that (5) is K̂-invariant, has an important consequence:

Remark 1.1. The pairing (6) is parallel with respect to any connection on P̂ .

We shall also need the pairing(
{Λ1

M}⊗k ⊗ ad(P̂ )
)
×M

(
{Λ1

M}⊗j ⊗ E
) ·−→ {Λ1

M}⊗(j+k) ⊗ E
given by (

u⊗ b) · η := u⊗ (b · η) .

1The results of this section will be applied later taking K̂ = O(n) × K, P̂ = O(M) ×M P ,

where P is a principal K-bundle over M as in Chapter 1. This justifies the notations K̂, P̂ used
in this section.

17
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In other words, for β ∈ {Λ1
x}⊗k ⊗ ad(P̂x) and η ∈ {Λ1

x}⊗j ⊗ Ex, one has

(β · η)(v1, . . . , vk, w1, . . . , wj) =
{
β(v1, . . . , vk) · η

}
(w1, . . . , wj) =

= β(v1, . . . , vk) · η(w1, . . . , wj)−
j∑
i=1

η(w1, . . . , β(v1, . . . , vk) · wi, . . . , wj) .
(8)

For a tensor monomial β = (ω1 ⊗ · · · ⊗ ωk) ⊗ b with ωi ∈ Λ1
x and b ∈ ad(P̂ )x, one

has (
(ω1 ⊗ · · · ⊗ ωk)⊗ b

)
· η = (ω1 ⊗ · · · ⊗ ωk)⊗ (b · η) .

For a connection B ∈ A(P̂ ) we define the following associated linear connec-
tions:

• ∇BM is the linear connection on TM associated with f∗(B). This connection
corresponds (via the the isomorphism P̂ ×r Rn ' TM induced by f) to
the linear connection associated with B on the associated vector bundle
P̂ ×r Rn.

• ∇BE is the linear connection on E = P̂ ×ρ V associated with B.
• ∇Bad is the linear connection on ad(P̂ ) = P̂ ×ad k̂ associated with B.
• ∇Bijpq is the linear connection on T⊗iM ⊗ (Λ1

M )⊗j ⊗E⊗p ⊗E⊗∗q associated
with B. In other words

∇Bijpq = (∇BM )⊗i ⊗ (∇BM )∗⊗j ⊗ (∇BE )⊗p ⊗ (∇BE )∗⊗q .

Taking into account Remark 1.1 it follows

Remark 1.2. For any x ∈M and tangent vector ξ ∈ TxM the following Leibniz
rule holds:

∇Bijpq,ξ(b · η) = (∇Bad,ξb) · η + b · ∇Bijpq,ξη .
In particular one has

∇BM,ξ(b ·X) = (∇Bad,ξb) ·X + b · (∇BM,ξX) ,

∇BE,ξ(b · y) = (∇Bad b) · y + b · (∇BE y) ,

for any pairs (b,X) ∈ Γ(ad(P̂ ))×X (M), (b, y) ∈ Γ(ad(P̂ ))× Γ(E).

Using tensor product of connections we obtain connections (∇BM )⊗j ⊗ ∇BE ,
(∇BM )⊗j ⊗∇Bad on the vector bundles {Λ1

M}⊗j ⊗ E, {Λ1
M}⊗j ⊗ ad(P̂ ).

Using the pairing (8) we obtain the following variation formula for the connec-
tion (∇BM )⊗j ⊗∇BE with respect to B:

Remark 1.3. Let B ∈ A(P̂ ) and β ∈ A1(ad(P̂ )). Put B′ := B + β. For any
η ∈ Γ

(
{Λ1

M}⊗j ⊗ E
)

one has(
(∇B

′

M )⊗j ⊗∇B
′

E

)
η =

(
(∇BM )⊗j ⊗∇BE

)
η + β · η . (9)

In other words, for any x ∈M and ξ ∈ TxM one has(
(∇B

′

M )⊗j ⊗∇B
′

E

)
ξ
η =

(
(∇BM )⊗j ⊗∇BE

)
ξ
η + β(ξ) · η .

Lemma 1.4. (Leibniz formula) With the notations introduced above the follow-

ing holds: For any β ∈ Γ
(
{Λ1

M}⊗k⊗ad(P̂ )
)
, η ∈ Γ

(
{Λ1

M}⊗j⊗E
)
, and any tangent

vector ξ ∈ TxM one has(
(∇BM )⊗(k+j)⊗∇BE

)
ξ

(
β ·η

)
=
((

(∇BM )⊗k⊗∇Bad

)
ξ
β
)
·η+β ·

(
(∇BM )⊗j⊗∇BE

)
ξ
η . (10)
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Proof. We give the proof in the case k = 1, which will be used later. We may
suppose that β is tensor monomial, so it has the form β = ω⊗b, where ω ∈ Γ(Λ1

M ),

and b ∈ Γ(ad(P̂ )). Using Remark 1.2 we obtain(
(∇BM )⊗(1+j) ⊗∇BE

)
ξ

(
β · η

)
=
(
(∇BM )⊗(1+j) ⊗∇BE

)
ξ

(
(ω ⊗ b) · η

)
=
(
(∇BM )⊗ ((∇BM )⊗j ⊗∇BE )

)
ξ

(
ω ⊗ (b · η)

)
=∇BM,ξω ⊗ (b · η) + ω ⊗

(
(∇Bad,ξb) · η + b · ((∇BM )⊗j ⊗∇BE )ξη

)
=
(
∇BM,ξω ⊗ b+ ω ⊗∇Bad,ξb

)
· η + (ω ⊗ b) · ((∇BM )⊗j ⊗∇BE )ξη

)
=
((
∇BM ⊗∇Bad

)
ξ
β
)
· η + β · ((∇BM )⊗j ⊗∇BE )ξη

)
.

Let B0 be a fixed connection on P̂ , and σ ∈ Γ(E). Put

σ
(i)
B0

:= ((∇B0
M )⊗(i−1) ⊗∇B0

E )⊗ · · · ⊗ (∇B0
M ⊗∇B0

E )(∇B0
E )σ ∈ Γ((Λ1

M )⊗i ⊗ E) .

For any k ∈ N and x ∈M we put

hσx(k) := {b ∈ ad(P̂x)| b · σ(i)
B0

= 0 for 0 ≤ i ≤ k} ,

and note that hσx(k) is a Lie subalgebra of ad(P̂x). One has hσx(k + 1) ⊂ hσx(k) for
any k. Put

kσx := min{k ∈ N| hσx(k + 1) = hσx(k)} .
Any K̂-equivariant isomorphism θ : P̂x → P̂x′ defines linear isomorphisms

θV : Ex → Ex′ , θk̂ : ad(P̂x)→ ad(P̂x′) .

and (via the bundle morphism f) it also defines a linear isomorphism

θM : Tx → Tx′ .

Denote by θk the induced isomorphism {Λ1
x}⊗k ⊗ Ex → {Λ1

x′}⊗k ⊗ Ex′ . We can
now define

Definition 1.5. Let B0 be a connection on P̂ . A section σ ∈ Γ(E) is called
infinitesimally homogeneous with respect to B0 if for any pair (x, x′) ∈ M × M

there exists a K̂-equivariant isomorphism θ : P̂x → P̂x′ such that

θi
({
σ

(i)
B0

}
x

)
=
{
σ

(i)
B0

}
x′

for 0 ≤ i ≤ kσx + 1 . (11)

Let θ : P̂x → P̂x′ be a K̂-equivariant isomorphism such that (11) holds. Then
θk̂ applies isomorphically hσx(k) on hσx′(k) for 0 ≤ k ≤ kσx + 1. This implies

Remark 1.6. Let σ ∈ Γ(E) be an infinitesimally homogeneous section with
respect to B0. Then kσx is independent of x.

We will denote by kσ the obtained constant.

Proposition 1.7. Suppose that σ is infinitesimally homogeneous with respect
to B0. Let B ∈ A(P̂ ) be a connection such that

((∇B
M )⊗k ⊗∇B

E )σ
(k)
B0

= 0 for 0 ≤ k ≤ kσ + 1 . (12)

Then

(1) The union hσ :=
⋃
x∈M hσx(kσ + 1) is an ∇B

ad-parallel subbundle of ad(P̂ ).

(2) One has (∇B
M ⊗∇B

ad )(B−B0) ∈ Γ(Λ1
M ⊗ Λ1

M ⊗ hσ) .
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Proof. (1) Let ν : [0, 1]→M be a smooth path in M . It suffices to note that,
by Remark 1.2, the parallel transport with respect to the connection ∇B

ad maps
isomorphically hσν(0) onto hσν(1).

(2) Put β := B−B0 ∈ A1(ad(P̂ )). Using Remark 1.3 we obtain, for 0 ≤ k ≤ kσ +1

0 = ((∇B
M )⊗k⊗∇B

E )σ
(k)
B0

= ((∇B0
M )⊗k⊗∇B0

E )σ
(k)
B0

+β ·σ(k)
B0

= σ
(k+1)
B0

+β ·σ(k)
B0

. (13)

Let x ∈ M , ξ ∈ TxM . Taking 0 ≤ k ≤ kσ, applying ((∇B
M )⊗k ⊗ ∇B

E )ξ on both
terms of (13), noting that for these values of k the first term on the right will still
vanish, and using the Leibniz rule (Lemma 1.4), one obtains(

(∇B
M ⊗∇B

ad )ξβ
)
· σ(k)

B0
= 0 for 0 ≤ k ≤ kσ .

Taking into account formula (8) it follows that, for any v ∈ TxM one has((
(∇B
M ⊗∇B

ad )ξβ
)
(v)
)
· σ(k) = 0 .

Therefore for any (ξ, v) ∈ TxM × TxM one has(
(∇B
M ⊗∇B

ad )β
)
(ξ, v) ∈ hσx(kσx) = hσx(kσx + 1) ,

which shows that

(∇B
M ⊗∇B

ad )β ∈ Γ(Λ1
M ⊗ Λ1

M ⊗ hσ(kσ + 1)) = Γ(Λ1
M ⊗ Λ1

M ⊗ hσ) .

The following result shows that, assuming that K̂ is compact, any connection
B satisfying (12) can be modified, by adding a section in Γ(Λ1

M ⊗hσ), such that the
modified connection B still satisfies (12), and also satisfies (∇BM ⊗∇Bad )(B−B0) = 0,
which is a much stronger property than Proposition 1.7 (2).

Proposition 1.8. Suppose that σ is infinitesimally homogeneous with respect
to B0. Let B ∈ A(P̂ ) be a connection such that

((∇B
M )⊗k ⊗∇B

E )σ
(k)
B0

= 0 for 0 ≤ k ≤ kσ + 1 .

Suppose that K̂ is compact. Then there exists a section β ∈ Γ(Λ1
M ⊗ hσ) such that

the connection B := B + β has the properties:

(1)

((∇BM )⊗k ⊗∇BE )(σ
(k)
B0

) = 0 for 0 ≤ k ≤ kσ + 1 . (14)

(2)

(∇BM ⊗∇Bad )(B −B0) = 0 . (15)

Proof. Note first that, in fact, for any β ∈ Γ(Λ1
M ⊗ hσ) the connection B :=

B + β has the property (14). The problem is to find β such that the second
conclusion holds.

Since K̂ is compact, we can endow its Lie algebra with an ad-invariant inner
product. Therefore ad(P̂ ) becomes an Euclidian vector bundle, and any connection

on P̂ induces an Euclidian connection on ad(P̂ ). We obtain orthogonal decompo-
sitions

ad(P̂ ) = hσ ⊕ (hσ)⊥, (16)

Λ1 ⊗ ad(P̂ ) = (Λ1
M ⊗ hσ)⊕ (Λ1

M ⊗ (hσ)⊥) . (17)
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Put b := B−B0, and let

b = b′ + b′′

the decomposition of b with respect to the splitting (17). We define

B := B− b′ = B0 + b′′ .

Since b′ is a section of hσ, we see that the new connection B := B−b′ still satisfies
(14). On the other hand, by Proposition 1.7, the decomposition (16) is parallel

with respect to any connection B on P̂ which satisfies (14). Similarly, for any
such connection the decomposition (17) will be (∇BM ⊗ ∇Bad )-parallel, in particular

Λ1
M⊗(hσ)⊥ is a (∇BM ⊗∇Bad )-parallel subbundle of Λ1

M⊗ad(P̂ ). Since b′′ is a section
of Λ1

M ⊗ (hσ)⊥ we obtain

(∇BM ⊗∇Bad )ξb
′′ ∈ Γ(Λ1

M ⊗ Λ1
M ⊗ (hσ)⊥) ∀ξ ∈ TM .

On the other hand, taking β = b′′ in Proposition 1.7, we obtain

(∇BM ⊗∇Bad )ξb
′′ ∈ Γ(Λ1

M ⊗ Λ1
M ⊗ hσ) ∀ξ ∈ TM .

Therefore (∇BM ⊗∇Bad )ξb
′′ = 0. But b′′ = B −B0.

We prove now that a connection B satisfying the hypothesis of Proposition 1.8
exists always. Therefore, under the additional assumption that K̂ is compact, we
will obtain the existence of a connection B satisfying the conclusion of Proposition
1.8.

Proposition 1.9. Suppose that σ is infinitesimally homogeneous with respect
to B0. There exists a connection B ∈ A(P̂ ) such that

((∇B
M )⊗k ⊗∇B

E )σ
(k)
B0

= 0 for 0 ≤ k ≤ kσ + 1 .

Proof. We use the infinitesimal homogeneity condition to obtain a Lie sub-
group K ⊂ K̂ and a principal K-bundle P ⊂ P̂ (a reduction of the structure group

of P̂ from K̂ to K) such that the sections σ
(k)
B0

(0 ≤ k ≤ kσ + 1) are all defined by
constant K-equivariant maps on P. It will follow that all theses sections are parallel
with respect to any connection on P, so the claim will follow by choosing B to be
a connection on P̂ associated with any connection on P.

For x ∈M we will identify the fibre L(M)x of the frame bundle L(M) with the
space of linear isomorphisms Rn → TxM . Therefore, with the notations introduced
at the beginning of this section, a point y ∈ P̂ defines a linear isomorphism

f(y) : Rn → TxM .

Using the k-order covariant derivative σ
(k)
B0

of σ we obtain a K̂-equivariant map

ϕk : P̂ → Lk(Rn, V )

defined by the formula

σ
(k)
B0

(f(y)(ξ1), . . . , f(y)(ξk)) = [y, ϕk(y)(ξ1, . . . , ξk)] .

In other words, ϕk is the equivariant map P̂ → Lk(Rn, V ) associated with σ
(k)
B0

regarded as a section in the associated bundle

(Λ1
M )⊗k ⊗ E = P̂ ×K̂ Lk(Rn, V ) .



22 2. THE DIFFERENTIABLE CASE

Put W :=
⊕kσ+1

k=0 Lk(Rn, V ) and define a K̂-equivariant map Φ : P̂ →W by

Φ(y) := (ϕk(y))0≤k≤kσ+1 . (18)

Since the section σ ∈ Γ(E) is infinitesimally homogeneous, it follows that Φ(P̂ ) is a

single K̂-orbit of W . Indeed, let x0 ∈M , y0 ∈ P̂x0
. For a point y ∈ P̂ , let x = π(y)

and θ : P̂x0 → P̂x be a K̂-equivariant isomorphism such that

θk
({
σ

(k)
B0

}
x0

)
=
{
σ

(k)
B0

}
x

for 0 ≤ k ≤ kσ + 1 . (19)

(see Definition 1.5). This implies the equality

[θ(y0), ϕk(y0)] = [y, ϕk(y)]

in P̂x ×K̂ Lk(Rn, V ). Choosing a ∈ K̂ such that θ(y0) = ya, we obtain

ϕk(y) = aϕk(y0) for 0 ≤ k ≤ kσ + 1 ,

which shows that y ∈ K̂Φ(y0). Therefore Φ(P̂ ) ⊂ K̂Φ(y0). Using the K̂-equivariance

property of Φ we get Φ(P̂ ) = K̂Φ(y0), as claimed. Put

K = K̂Φ(y0) , P := Φ−1(Φ(y0)) .

Using a well-known theorem in the theory of fibre bundles (see Lemma 1.10 below),

it follows that P is a K-reduction of P̂ . Since Φ is obviously constant on P, it follows
that the restrictions ϕk P are all constant on P, so the corresponding sections will

be parallel with respect to any connection on P. Therefore σ
(k)
B0

will be parallel

with respect to any connection B on P̂ which is associated with a connection on
P.

Lemma 1.10. Let π : P̂ →M be a principal K̂-bundle over a manifold M , and
let K be a closed subgroup of K̂. There is a bijection between the set of K-reductions
of P̂ and the set of pairs

(ϕ, u) ∈ Γ(M, P̂ ×K̂ (K̂/K))× (K̂/K) .

The K-reduction associated with a pair (ϕ, u) is the pre-image Φ−1(u), where

Φ : P̂ → K̂/
K

is the equivariant map associated with ϕ.

Proof. See the proof of [KN, Proposition 5.6].

Combining Proposition 1.8 and Proposition 1.9 we obtain the main theorem of
this section

Theorem 1.11. Suppose that σ is infinitesimally homogeneous with respect to
B0 and the structure group K̂ is compact. Then there exists a connection B ∈ A(P̂ )
with the properties:

(1)

((∇BM )⊗k ⊗∇BE )(σ
(k)
B0

) = 0 for 0 ≤ k ≤ kσ + 1 . (20)

(2)

(∇BM ⊗∇Bad )(B −B0) = 0 . (21)
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2. Infinitesimally homogeneous triples

Let (M, g) be an n-dimensional Riemannian manifold, K be a compact Lie
group, P be a principal K-bundle on M , and A0 be a connection on P . Put

K̂ := O(n)×K , P̂ := O(M)×M P , V := (Rn∗)⊗4 ⊕
(
(Rn∗)⊗2 ⊗ k

)
.

Note that K̂ comes with obvious representations r : K̂ → GL(n), ρ : K̂ → GL(V ),
and P̂ comes with an obvious bundle morphism f : P̂ → L(M) of type r given by
the projection O(M)×M P → O(M) ⊂ L(M).

The connection on the principal bundle O(M) which corresponds to the Levi-
Civita connection will be denoted by C0. The Riemannian curvature R of g will be
regarded as a section of (Λ1

M )⊗4, and the curvature FA0 of A0 will be regarded as
a section of the vector bundle Λ2

M ⊗ ad(P ) ⊂ (Λ1
M )⊗2 ⊗ ad(P ). The pair (R,FA0)

can be regards as a section in the associated vector bundle E := P̂ ×K̂ V . Note also
that P̂ comes with a connection B0 defined by the pair (C0, A0).

Definition 2.1. The triple (g, P
p−→ M,A0) will be called infinitesimally homo-

geneous if the pair (R,FA0) (regarded as a section in the associated vector bundle

E = P̂ ×K̂ V ) is infinitesimally homogeneous with respect to B0 in the sense of
Definition 1.5 .

This condition can be reformulated explicitly as follows:
Let ∇C0 denotes the Levi-Civita connection of g on M and, let ∇A0 denote the

associted connection on adjoint bundle ad(P ). We will denote by ∇C0A0 the tensor
product connection ∇C0 ⊗∇A0 on Λ2

M ⊗ ad(P ). More generally, we obtain a tensor
product connection (∇C0A0)i = (∇C0)⊗(i−1)⊗∇C0A0 on (Λ1

M )⊗(i−1)⊗Λ2
M⊗ad(P ).

For x ∈ M let so(Tx) be the Lie algebra of skew-symmetric endomorphism of the
Euclidian space (Tx, gx). For any k ∈ N and x ∈M we define

hg,A0
x (k) := {(u, v) ∈ so(Tx)⊕ ad(Px)| u ·

(
(∇C0)iR

)
x

= 0,

(u, v) ·
(
(∇C0A0)iFA0

)
x

= 0 for 0 ≤ i ≤ k} ,

and note that hg,A0
x (k) is a Lie subalgebra of so(Tx)⊕ ad(Px). For any k one has

hg,A0
x (k + 1) ⊂ hg,A0

x (k) .

Put
kg,A0
x := min{k ∈ N| hg,A0

x (k + 1) = hg,A0
x (k)} .

With these definitions we see that

Remark 2.2. The triple (g, P
p−→ M,A0) is infinitesimally homogeneous if and

only if for any (x, x′) ∈ M ×M , there exists a pair (f, φ) where f : TxM → Tx′M
is a linear isometry, and φ : Px → Px′ is K-equivariant isomorphism, such that for
any 0 ≤ k ≤ kg,A0

x + 1 one has:

(1) f
((

(∇C0)kR
)
x

)
=
(
(∇C0)kR

)
x′

.

(2) (f, φ)
((

(∇C0A0)kFA0
)
x

)
=
(
(∇C0A0)kFA0

)
x′

.

The second condition can be reformulates explicitly as follows: (∇C0A0)kFA0

is a section of the vector bundle (Λ1
M )⊗k ⊗ Λ2

M ⊗ ad(P ). The fiber ad(P )x at x of
the adjoint bundle ad(P ) is given by

ad(P )x = Px ×K k = Px × k/
K ,
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so a K-equivariant isomorphism φ : Px → Px′ induces a linear isomorphism

ad(φ) : ad(P )x → ad(P )x′

by the formula [y, α] 7→ [φ(y), α]. The second condition in Remark 2.2 can be
written as (

(∇C0A0)kFA0
)
x′

(f(v1), . . . , f(vk), f(w1), f(w2)) =

= ad(φ)
(
(∇C0A0)kFA0)x(v1, . . . , vk, w1, w2)

)
in ad(P )x′ for any tangent vectors vi ∈ TxM , w1, w2 ∈ TxM .

The isomorphism pair (f, φ) defines a Lie algebra isomorphism

so(Tx)⊕ ad(Px)→ so(Tx′)⊕ ad(Px′) ,

which isomorphically maps hg,A0
x (k) onto hg,A0

x′ (k) for 0 ≤ k ≤ kg,A0
x + 1. This

implies

Remark 2.3. Let (g, P
p−→ M,A0) be an infinitesimally homogeneous triple.

Then kg,A0
x is independent of x. We will denote by kg,A0 the obtained constant.

Applying Theorem 1.11 to our situation we obtain:

Theorem 2.4. Let (g, P
p→M,A0) be an infinitesimally homogeneous triple on

M . Then, there exist a pair of connection B = (C,A) ∈ A(O(M))×A(P ) = A(P̂ )
with the following properties:

(1)

∇CR = 0 , ∇CAFA0 = 0 , ∇C(C − C0) = 0 , ∇CA(A−A0) = 0 .

(2)

∇CTC = 0 , ∇CRC = 0 , ∇CAFA = 0 ,

In these formulae RC , TC stand for the curvature, respectively the torsion
tensor of ∇C .

Proof. Let σ be the section of E := P̂ ×K̂ V defined by the pair (R,FA0).

Theorem 1.11 gives a connection B = (C,A) ∈ A(O(M))×A(P ) = A(P̂ ) such that

((∇BM )⊗k ⊗∇BE )(σ
(k)
B0

) = 0 for 0 ≤ k ≤ kg,A0 + 1 , (∇BM ⊗∇Bad)(B −B0) = 0 .

In particular, for k = 0 we obtain (∇BE )(R,FA0) = 0, i.e.

∇CR = 0, ∇CAFA0 = 0 .

The difference B −B0 can be identified with the pair (C −C0, A−A0). Therefore
the above formula gives

∇C(C − C0) = 0 , ∇CA(A−A0) = 0 ,

which proves (1). For (2) note first that TC is the image of C−C0 under the bundle
isomorphism Λ1so(TM )→ L2

alt(TM , TM ) given by S 7→ TS , where

TS(X,Y ) := S(X)(Y )− S(Y )(X) .

This isomorphism is induced by an O(n)-equivariant isomorphism

Rn∗ ⊗ so(n)→ L2
alt(Rn,Rn).

So it is parallel with respect to any metric connection on M . Therefore, the condi-
tion ∇C(C − C0) = 0 is equivalent to ∇CTC = 0. Using ∇CTC = 0, ∇CR = 0, it
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follows ∇CRC = 0 [TV, Page. 14].

Now, in order to prove that ∇CAFA = 0, put α := A−A0. Therefore we have,

∇CAFA0 = 0 , ∇CAα = 0 .

Using [Te, Proposition 3.2.8] we have

FA0 = FA−α = FA − dAα+
1

2
[α ∧ α] . (22)

Let X, Y , Z ∈ X (M) be arbitrary vector fields on M . We have

(dAα)(X,Y ) = ∇AX(α(Y ))−∇AY (α(X))− α([X,Y ]) . (23)

Using the fact that α ∈ A1(ad(P )) is ∇CA-parallel, we obtain

0 = (∇CAα)(X,Y ) = (∇CAX α)(Y ) = ∇AX(α(Y ))− α(∇CXY ) . (24)

Using (23) and (24) to obtain,

(dAα)(X,Y ) = α(∇CXY )− α(∇CYX)− α([X,Y ]) = α(TC(X,Y )) . (25)

On one hand

0 = (∇CAX α)(TC(Y,Z)) = ∇AX(α(TC(Y,Z))− α(∇CXTC(Y,Z)) , (26)

and on the other hand (24) and (25) imply that

(∇CAdAα)(X,Y, Z) = ∇AX((dAα)(Y,Z))− (dAα)(∇CXY, Z)− (dAα)(Y,∇CXZ)

= ∇AX(α(TC(Y,Z)))− α(TC(∇CXY,Z))− α(TC(Y,∇CXZ))

= α(∇CXTC(Y, Z))− α(TC(∇CXY, Z))− α(TC(Y,∇CXZ))

= α((∇CXTC)(Y,Z)) = 0.

Finally, if we put η = 1
2 [α ∧ α], then for any Y,Z ∈ X (M)

2η(Y, Z) = [α ∧ α](Y,Z) = [α(Y ), α(Z)]− [α(Z), α(Y )] = 2[α(Y ), α(Z)] . (27)

Therefore,

∇AX(η(Y,Z)) = ∇AX([α(Y ), α(Z)]) = [∇AX(α(Y )), α(Z)] + [α(Y ),∇AX(α(Z))] . (28)

Using (22), (24) and (28) we obtain

(∇CAX η)(Y, Z) =∇AX(η(Y, Z))− η(∇CXY,Z)− η(Y,∇CXZ)

=[∇AX(α(Y )), α(Z)] + [α(Y ),∇AX(α(Z))]− [α(∇CXY ), α(Z)]

−[α(Y ), α(∇CXZ)] = [(∇CAX α)(Y ), α(Z)] + [α(Y ), (∇CAX α)(Z)] = 0 .

Therefore ∇CAFA = 0 as claimed.

Using Singer’s theorem (see Chapter 5.2.9) we obtain

Remark 2.5. Let (g, P
p−→ M,A0) be a infinitesimally homogeneous triple.

Then (M, g) is locally homogeneous.
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A pair (C,A) ∈ A(O(M))×A(P ) defines in a canonical way a linear connection
∇̄ = ∇̄CA on the tangent bundle TP . This construction will play an important role
in our arguments, so we explain this construction in detail:

Recall that, in general, we identify a connection on a principal bundle with the
corresponding horizontal distribution. Using the bundle isomorphism

J : p∗TM → A

(defined by the inverse of p∗ A), we obtain a linear connection

∇h,CA := J(p∗∇C)

on the horizontal subbundle A ⊂ TP . Its curvature F∇
h,CA

is given by

F∇
h,CA

= j(p∗(RC)) ,

where j : gl(p∗(TM )) = p∗(gl(TM ))→ gl(A) is the bundle isomorphism induced by
J .

On the other hand we can define a linear connection ∇v,A on the vertical bun-
dle VP via the canonical bundle isomorphism VP ' P × k. More precisely, if a#,
b# denote the fundamental fields corresponding to a, b ∈ k and if X̃ denotes the
A-horizontal lift of X ∈ X (M), then we define

∇v,A
a# b# = [a, b]#, ∇v,A

X̃
a# = 0 .

Using the direct sum decomposition TP = A⊕VP , the linear connection ∇h,CA
on the horizontal subbundle A, and the linear connection ∇v,A on vertical sub-
bundle VP , we obtain a linear connection ∇̄ = ∇̄CA := ∇h,CA ⊕ ∇v,A on P . The
connection ∇̄ has the following properties:

Proposition 2.6. Let ∇̄ = ∇̄CA be the linear connection on the tangent bundle
TP defined as above. Let a#, b# be the fundamental fields corresponding to a, b ∈ k,
and let X̃, Ỹ denote the A-horizontal lifts of X,Y ∈ X (M). Let Z ∈ X v(P ) be a
vertical vector field on P . Then one has

(1) ∇̄X̃ Ỹ = (∇CXY )∼.

(2) ∇̄X̃a# = ∇̄a#X̃ = 0.

(3) ∇̄a#b# = [a, b]#.

(4) ∇̄X̃Z = [X̃, Z].

(5) ∇̄a#Z = [a#, Z].

Proof. The first three properties follow from the definition of ∇̄. We prove
(4). Since Z ∈ X v(P ) is a vertical vector field, there exists a family of fundamental

fields b#1 , . . . , b
#
r and a family of differentiable functions f1, . . . , fr on P such that

Z =
∑r
i=1 fib

#
i . Therefore, we have

∇̄X̃Z = ∇̄X̃
r∑
i=1

fib
#
i =

r∑
i=1

(X̃(fi)b
#
i + fi∇̄X̃b

#
i ) =

r∑
i=1

X̃(fi)b
#
i .

Also we have

[X̃, Z] = [X̃,

r∑
i=1

fib
#
i ] =

r∑
i=1

(X̃(fi)b
#
i + fi[X̃, b

#
i ]) =

r∑
i=1

X̃(fi)b
#
i ,

which proves (4).
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To prove (5) let Z =
∑r
i=1 fib

#
i be as above. We have

∇̄a#Z = ∇̄a#

r∑
i=1

fib
#
i =

r∑
i=1

(a#(fi)b
#
i + fi∇̄a#b#i )

=

r∑
i=1

(
a#(fi)b

#
i + fi[a

#, b#i ]
)

=

r∑
i=1

[a#, fib
#
i ] = [a#, Z] .

The space A0(ad(P )) has a natural Lie algebra structure, and can be identified
with the Lie algebra of the gauge group G(P ) = Γ(M,P ×Ad K) of P . For an
element ν ∈ A0(ad(P )) we define a vertical vector field ξν ∈ X v(P ) by

ξνy =
d

dt t=0

{
y exp(tν(y))

}
.

The next lemma gives two important properties of the vertical vector field ξν .

Lemma 2.7. Let p : P → M be a principal K-bundle and A a connection on
P . Let a ∈ k and let X̃ be the A-horizontal lift of vector field X ∈ X (M). For any
section ν ∈ A0(ad(P )) one has

[a#, ξν ] = 0 , [X̃, ξν ] = ξ∇
A
Xν .

Proof. To prove the first formula let (ϕt)t∈R be the one parameter group
of diffeomorphisms associated with the fundamental field a#. Therefore one has
ϕt(y) := y exp(ta). Let (fs)s∈R be the one parameter group of diffeomorphisms
associated with the field ξν . By [KN, Proposition 1.11] one has [a#, ξν ] = 0 if and
only if ϕt ◦ fs = fs ◦ ϕt for every s and t. But for each y ∈ P one has

fs(ϕt(y)) = fs(y exp(ta)) = fs(y) exp(ta) = ϕt(fs(y)) .

because fs is a bundle isomorphism, so it commutes with right translations.
To prove the second formula, let t 7→ xt = x(t) be an integral curve of X

defined for t ∈ (−ε, ε) for some ε > 0 with the initial condition x(0) = x0. The
A-horizontal lift t 7→ yt of the path t 7→ xt through a point y0 ∈ Px0

is the integral

curve of X̃ with initial condition y(0) = y0. A smooth section ν ∈ A0(ad(P )) can
be regarded as a K-equivariant map ν : P → k. Put at := ν(yt) ∈ k and note that,
for each t ∈ (−ε, ε), the vertical vector field ξνyt is defined by

ξνyt = (at)
#
yt =

d

ds s=0

{
yt exp(sat)

}
.

Let (βt)t∈(−ε,ε) be the one parameter group of local diffeomorphism associated with

X̃. We have

[X̃, ξν ]y0 = lim
t→0

1

t
{ξνy0

− (βt)∗(ξ
ν
y−t)}

= lim
t→0

1

t
{(a0)#

y0
− (βt)∗(a−t)

#
y−t}

Since, (βt)∗(a−t)
#
y−t = (a−t)

#
y0

we have

[X̃, ξν ]y0
= lim
t→0

1

t
{(a0)#

y0
− (a−t)

#
y0
} = {lim

t→0

1

t
(a0 − a−t)}#y0

= {(ȧt)t=0}#y0

= { d
dt
ν(yt)t=0}#y0

= {dν(X̃y0
)}#y0

= {∇AXy0 ν}
#
y0

= ξ
∇AXy0 ν .
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Proposition 2.8. Let ν ∈ A0(ad(P )) be a section of the adjoint bundle and

denote by ξν the corresponding vertical field. Let X̃ be the A-horizontal lift of the
vector field X ∈ X (M) and let a# denote the fundamental vector field corresponding
to a ∈ k. Then we have

∇̄X̃ξ
ν = ξ∇

A
Xν , ∇̄a#ξν = 0 .

Proof. The result follows from Proposition 2.6 and Lemma 2.7.

The following theorem states that if ∇CRC = 0, ∇CTC = 0, ∇CAFA = 0, then
the associated connection ∇̄ = ∇̄CA satisfies the hypothesis of the Singer Theorem
(see Theorem 2.9 in Chapter 5):

Theorem 2.9. Let (C,A) ∈ A(O(M))×A(P ) such that ∇CRC = 0, ∇CTC =
0, ∇CAFA = 0. Then, the associated connection ∇̄ = ∇̄CA satisfies the following
conditions:

∇̄R∇̄ = ∇̄T ∇̄ = 0.

Proof. Since the connection ∇ν,A on VP ' P × k is flat, we have

R∇̄ = j(p∗(RC))⊕ F∇
ν,A

= j(p∗(RC)) .

Since gl(A) is a ∇̄-parallel subbundle of gl(TP ), and the curvature tensor RC is
∇C-parallel one has

∇̄(j(p∗(RC))) = ∇h,CA(j(p∗(RC))) = j(p∗(∇C))
(
j(p∗(RC))

)
=

= j
(
p∗(∇C)(p∗(RC))

)
= j
(
p∗(∇CRC)

)
= 0 .

In this formulae we used the same symbols for the connections induced by ∇̄,
∇C on the bundles of endomorphisms. The claimed formula ∇̄R∇̄ = 0 is proved.
For the second, denote the torsion tensor of linear connection ∇̄ by T̄ to save on
notation. Let a#, b# be the fundamental fields corresponding to a, b ∈ k, and let
X̃, Ỹ denote the A-horizontal lifts of X, Y ∈ X (M). Using the properties of ∇̄
given by Proposition 2.6, and formula [GH, P. 257] for the vertical component of
the Lie bracket of two horizontal lifts, we obtain the following formulae:

(i) T̄ (X̃, Ỹ ) = ∇̄X̃ Ỹ − ∇̄Ỹ X̃ − [X̃, Ỹ ] =

= (∇CXY −∇CYX − [X,Y ])∼ + ξF
A(X,Y ) = TC(X,Y )∼ + ξF

A(X,Y ).
(ii) T̄ (a#, b#) = ∇̄a#b# − ∇̄b#a# − [a#, b#] = [a#, b#] .

(iii) T̄ (X̃, a#) = ∇̄X̃a# − ∇̄a#X̃ − [X̃, a#] = 0 .

It suffices to prove (∇̄T̄ )(U, V,W ) = 0 for vector fields U , V , W ∈ X (P ) in the
special cases when each one of these three vector fields is either a horizontal lift, or
a fundamental field. We have

(∇̄U T̄ )(V,W ) = ∇̄U T̄ (V,W )− T̄ (∇̄UV,W )− T̄ (V, ∇̄UW ) . (29)

(1) Suppose U = X̃, V = Ỹ , W = Z̃. Then

∇̄U T̄ (V,W ) = ∇̄X̃
(
(TC(Y,Z)∼) + ξF

A(Y,Z)
)

=
(
∇CXTC(Y,Z)

)∼
+ ξ∇

A
XF

A(Y,Z).
(30)
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In the same way one obtains

T̄ (∇̄UV,W ) = (TC(∇CXY,Z))∼ + ξF
A(∇CXY,Z) , (31)

T̄ (V, ∇̄UW ) = (TC(Y,∇CXZ))∼ + ξF
A(Y,∇CXZ) . (32)

Using the equations (29), (30), (31), (32) and Proposition 2.8 we obtain

(∇̄U T̄ )(V,W ) = ∇̄U T̄ (V,W )− T̄ (∇̄UV,W )− T̄ (V, ∇̄UW )

= (∇CXTC(Y,Z))∼ − (TC(∇CXY,Z))∼ − (TC(Y,∇CXZ))∼

+ ξ∇
A
XF

A(Y,Z) − ξF
A(∇CXY,Z) − ξF

A(Y,∇CXZ)

=
(
(∇CTC)(X,Y, Z)

)∼
+ ξ(∇CAX FA)(Y,Z) .

Since ∇CTC = 0 and ∇CAFA = 0, the right hand side of the above
equation vanishes.

(2) Suppose U = a], V = b], W = c], where a, b, c ∈ k. By the Jacobi identity

(∇̄a] T̄ )(b], c]) = ∇̄a] T̄ (b], c])− T̄ (∇̄a]b], c])− T̄ (b], ∇̄a]c])

=
(
[a, [b, c]] + [b, [c, a]]] + [c, [a, b]]

)#
= 0

(3) Suppose U = a] and V = Ỹ , W = Z̃ are the A-horizontal lifts of vector
fields Y,Z ∈ X (M), then using Proposition 2.8 we obtain

∇̄a#((TC(Y, Z))∼ + ξF
A(Y,Z))− T̄ (∇̄a# Ỹ , Z̃)− T̄ (Ỹ , ∇̄a#Z̃) = 0.

(4) In any other cases the claim follows from the definition of ∇̄.

Recall that the space of connections A(P ) is an affine space with model space
A1(ad(P )) [DK], [Te]. For a connection A0 ∈ A(P ), and a 1-form α ∈ A1(ad(P ))
the connection form ωA of A := A0 +α is given by ωA = ωA0 +α, where the second
term on the right as been identified with the associated tensorial 1-form of type ad
(see [KN, Example 5.2 p.76]) on P . In other words, for a tangent vector v ∈ TyP
the element αy(v) ∈ k is defined by the equality α(p∗(v)) = [y, αy(v)] ∈ ad(Pp(y)).
In other words, regarding α(p∗(v)) as a K-equivariant map Pp(y) → k, one has
αy(v) = α(p∗(v))(y).

Lemma 2.10. Let A = A0 + α. Let Z ∈ X (M), Z̃A0 be its A0-horizontal lift,

and Z̃ be its A-horizontal lift (which coincides with the A-horizontal projection of

Z̃A0). Then

Z̃ = Z̃A0 − ξα(Z) .

Proof. For any field X ∈ X (P ) the A-horizontal projection of X is given by

XA = X − ξωA(X). If now X = Z̃A0 , we have ωA0(X) = 0, so for any y ∈ P we
have ωA,y(X) = αy(X) = α(Z)(y).

Lemma 2.11. Let (C,A) ∈ A(O(M))×A(P ) such that

∇CRC = 0, ∇CTC = 0, ∇CAFA = 0, ∇CA(A−A0) = 0 .

Then the distributions A, A0 are ∇̄-parallel.
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Proof. To prove that A is ∇̄-parallel, let X̃ be the A-horizontal lift of vector
field X ∈ X (M). We have to show that for any Y ∈ X (P ) the vector field ∇̄Y X̃
is A-horizontal. If Y := Z̃ is A-horizontal lift of a vector fields Z on M then ∇̄YX
is A-horizontal lift of ∇CZX. If Y ∈ Γ(VP ) is a vertical fields, then ∇̄Y X̃ = 0 and

therefore ∇̄Y X̃ ∈ Γ(A).

For the second property, we will denote by Z̃A0 the A0-horizontal lift of a
vector field Z ∈ X (M). Since the vector fields of the form Z̃A0 generate Γ(A0) as a
C∞(P,R) module, it suffices to prove that, for any Y ∈ X (P ), Z ∈ X (M) one has

∇̄Y (Z̃A0) ∈ Γ(A0). By Lemma 2.10 we have

Z̃ = Z̃A0 − ξα(Z).

If Y = Ũ is the A-horizontal lift of a vector field U ∈ X (M), then, using the
parallelism assumption ∇CAα = 0, the definition of ∇̄, and Proposition 2.8, we
obtain:

∇̄Y Z̃A0 = ∇̄Y (Z̃ + ξα(Z)) = ˜(∇CUZ) + ∇̄Ũξ
α(Z)

= ˜(∇CUZ) + ξ∇
A
U (α(Z)) = ˜(∇CUZ) + ξα(∇CUZ) .

But, by Lemma 2.10, the right hand side of the above equation is the A0-horizontal
lift of ∇CUZ, which proves the claim in this case. If now Y = a# is a fundamental
field, then

∇̄Y Z̃A0 = ∇̄a#(Z̃ + ξα(Z))

= ∇̄a#Z̃ + ∇̄a#ξα(Z) .

Using the Proposition 2.6 we obtain ∇̄a#Z̃ = 0. Also, since α(Z) ∈ A0(ad(P ))
one can use the Proposition 2.8 to see that ∇̄a#ξα(Z) = 0. Therefore in all cases
∇̄Y Z̃A0 is A0-horizontal.

In conclusion, using Theorem 2.4, Theorem 2.9, Lemma 2.11 and Proposition
2.6 we obtain

Theorem 2.12. Suppose that the triple (g, P
p−→ M,A0) is infinitesimally ho-

mogeneous. There exists a pair (C,A) ∈ A(O(M))×A(P ) such that

∇CRC = 0, ∇CTC = 0, ∇CAFA = 0, ∇CA(A−A0) = 0 .

The linear connection ∇̄ = ∇̄CA on TP associated with this pair has the prop-
erties:

(1) ∇̄R∇̄ = ∇̄T ∇̄ = 0,
(2) The vector fields a# are ∇̄ parallel along the A-horizontal curves.
(3) The distributions A, A0 are ∇̄-parallel.

3. The main theorems

We begin by recalling the results proved in [KN, Ch.VI Section 7] on the exis-
tence and extension properties of local affine isomorphisms with respect to a linear
connection satisfying the conditions ∇R∇ = 0, ∇T∇ = 0. Compared to [KN], our
presentation uses a new formalism: the space of germs of ∇-affine isomorphisms.

Let M be a differentiable n-manifold, and let ∇ be a linear connection on M
satisfying the conditions ∇R∇ = 0, ∇T∇ = 0. Let S∇ be the space of germs of
∇-affine isomorphisms defined between open sets of M , and let s : S∇ → M ,
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t : S∇ → M be the source, respectively the target map on this space. S∇ has a
canonical structure of a differentiable manifold and, with respect to this structure,
s and t are local diffeomorphisms.

A germ ϕ ∈ S∇ defines an isomorphism ϕ∗ : Ts(ϕ)M → Tt(ϕ)M with the
property

ϕ∗(R
∇
s(ϕ)) = R∇t(ϕ), ϕ∗(T

∇
s(ϕ)) = T∇t(ϕ) .

Conversely, [KN, Theorem 7.4] can be reformulated as follows

Remark 3.1. Let (u, v) ∈ M ×M . For any linear isomorphism f : TuM →
TvM satisfying

f(R∇u ) = R∇v , f(T∇u ) = T∇v (33)

there exists a unique germ ϕf ∈ (s, t)−1(u, v) (of a ∇-affine isomorphism) such that
(ϕf )∗ = f .

Let now σ : M×M →M , τ : M×M →M be the projections on the two factors,
and let Iso(σ∗(TM ), τ∗(TM )) ⊂ Hom(σ∗(TM ), τ∗(TM )) be the (locally trivial) fibre
bundle of isomorphisms between the two pull-backs of TM . Conditions (33) define
a closed, locally trivial subbundle S∇ ⊂ Iso(σ∗(TM ), τ∗(TM )). Remark 3.1 shows
that

Remark 3.2. The natural map δ : S∇ → S∇ given by ϕ 7→ ϕ∗ is bijective.

This map is an injective immersion, and it is bijective, but it is not a diffeo-
morphism. S∇ can be identified with the union of leaves of a foliation of S∇ with
n-dimensional leaves. The topology of S∇ is finer than the topology of S∇. The
leaves of this foliation are the integrable submanifolds of the involutive distribution
D∇ ⊂ TS∇ defined in the following way: Let f ∈ S∇. Put u := σ(f), v := τ(f),
ϕ := δ−1(f). For a tangent vector ξ ∈ TuM , let γ : (−ε, ε)→M be a smooth curve
such that γ(0) = u, γ̇(0) = ξ. Using parallel transport with respect to ∇ along
the curves γ, ϕ ◦ γ we obtain, for any sufficiently small t ∈ (−ε, ε), isomorphisms
at : TuM → Tγ(t)M , bt : TvM → Tϕ(γ(t))M . Define

λf (ξ) :=
d

dt t=0
(bt ◦ f ◦ a−1

t ) ∈ T(u,v)(S
∇) .

The distribution D∇ is defined by

D∇f := {λf (ξ)| ξ ∈ Tσ(f)M} .

The curve t 7→ bt ◦ f ◦ a−1
t will be an integral curve of this distribution. Note that

we may take γ to be the∇-geodesic with initial condition (u, ξ) , and then ϕ◦γ will
be the ∇-geodesic with initial condition (v, f(ξ)). Using this remark, we obtain

Remark 3.3. Let ϕ ∈ S∇, and ξ ∈ Ts(ϕ). Suppose that ∇-geodesics γ, η with
initial conditions (s(ϕ), ξ), (t(ϕ), ϕ∗(ξ)) respectively can be both extended on the
interval (α, β) 3 0. Then γ has a smooth lift in S∇ with initial condition ϕ via the
source map s : S∇ →M .

Using this remark one can prove:

Proposition 3.4. Let ∇ be a connection on a connected manifold M such
that ∇R∇ = 0, ∇T∇ = 0. Suppose that ∇ is complete. Then the source map
s : S∇ →M is a covering map. In particular, when ∇ is complete and M is simply
connected, any element ϕ ∈ S∇ extends to a unique global ∇-affine isomorphism
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M → M . In particular, for any pair (x, x′) ∈ M ×M there exists a unique global
∇-affine isomorphism mapping x to x′.

Proof. It suffices to note, that for a ∇-convex open set U ⊂M the following
holds: any germ ϕ ∈ S∇ with s(ϕ) ∈ U has an extension on U . The point is that,
since ∇ is complete, for any geodesic γ : (α, β) → U passing through s(ϕ), the
composition ϕ ◦ γ can be extended on the whole (α, β). Therefore all ∇- geodesics
in U passing through s(ϕ) admit lifts with initial condition ϕ. Using these lifts it
follows that the connected components of s−1(U) are identified with U via s.

An important special case (which intervenes in the proof of Singer’s theorem)
concerns a connection ∇ satisfying the conditions ∇R∇ = 0, ∇T∇ = 0 which is a
metric connection, i.e. there exists a Riemannian metric g on M such that ∇g = 0.
In this case one defines submanifolds

S∇g := {ϕ ∈ S∇| ϕ∗ is an isometry}, S∇g := {f ∈ S∇| f is an isometry}

of S∇, S∇ respectively. S∇g is open in S∇. In other words S∇g is a union of integral
submanifolds (of maximal dimension) of the involutive distribution D∇. On the
other hand, an important result in Riemannian geometry states [TV, Proposition
1.5]:

Proposition 3.5. Let (M, g) be a complete Riemannian manifold. Then any
metric connection ∇ on M is complete.

Using these facts Proposition 3.4 gives

Corollary 3.6. Let (M, g) be a connected Riemannian manifold endowed with
a metric connection ∇ such that ∇R∇ = 0, ∇T∇ = 0. Suppose that (M, g) is
complete. Then the source map s : S∇g →M is a covering map. In particular, when

(M, g) is complete and simply connected, any element ϕ ∈ S∇g extends to a unique
global ∇-affine isometry M → M . In particular, for any pair (x, x′) ∈ M ×M
there exists a unique global ∇-affine isometry mapping x to x′.

Now we come back to the connection ∇̄ = ∇̄CA on TP associated with a pair
(C,A) ∈ A(O(M))×A(P ) satisfying the conditions

∇CRC = 0, ∇CTC = 0, ∇CAFA = 0, ∇CA(A−A0) = 0 .

We know that ∇̄R∇̄ = 0, ∇̄T ∇̄ = 0, so all constructions and results above apply to
∇̄. Using the additional structure we have on P (the K-action, the two connections
A, A0, and the metric g on P/K) we will define an open submanifold S∇̄g,K of
S∇̄ consisting of germs of affine transformations which are compatible with this
structure:

Since ∇̄ is K-invariant, the manifolds S∇̄, S∇̄ come with natural right K-
actions given by (ϕ, k) 7→ Rk ◦ ϕ ◦R−1

k , (f, k) 7→ (Rk)∗ ◦ f ◦ (R−1
k )∗, and the maps

s, t : S∇̄ → P , σ, τ : S∇̄ → P are K-equivariant.
We define a submanifold S∇̄K,g ⊂ S∇̄ by

S∇̄g,K :={f ∈ S∇̄| f(Aσ(f)) = Aτ(f), f(A0,σ(f)) = A0,τ(f),

f(a#
σ(f)) = a#

τ(f) ∀a ∈ k, f induces an isometry Tp(σ(f))M → Tp(τ(f))M} .
(34)
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Lemma 3.7. S∇̄g,K is K-invariant, and is a union of integral submanifolds of

the distribution D∇̄. In particular S∇̄g,K := δ−1(S∇̄g,K) is a K-invariant open sub-

manifold of S∇̄.

Proof. We have to prove that for any f ∈ S∇̄g,K one has Df ⊂ TfS
∇̄
g,K , i.e.

that for any ξ ∈ Tσ(f)P we have λf (ξ) ∈ TfS∇̄g,K . It suffices to prove that for any

a ∈ k and any ζ ∈ Tp(σ(f))M one has (denoting by ζ̃σ(f) the A-horizontal lift of ζ
at σ(f)):

λf (a#
σ(f)) ∈ TfS

∇̄
g,K , λf (ζ̃σ(f)) ∈ TfS∇̄g,K .

The first formula is obtained using the curve t 7→ σ(f) exp(ta), and the second is
obtained using the curve t 7→ η̃σ(f)(t), where η : (−ε, ε) → M is a ∇C-geodesic

such that η(0) = p(σ(f)), η̇(0) = ζ. One uses the fact that the vector fields a# are
∇̄-parallel along A-horizontal curves, and that the distributions A, A0 is ∇̄-parallel.

Lemma 3.8. The restrictions,

(p ◦ σ, p ◦ τ)
S∇̄g,K

: S∇̄g,K →M ×M , (p ◦ s, p ◦ t)
S∇̄g,K

: S∇̄g,K →M ×M

are surjective.

Proof. Let x0, x1 ∈ M , and let η : [0, 1] → M be a smooth path in M such
that η(0) = x0, η(1) = x1. Choose a point y0 ∈ Px0

, let η̃ be the A-horizontal
lift of η with the initial condition η̃(0) = y0, and let y1 := η̃(1). Using ∇̄-parallel

transport along η̃, we obtain an element f ∈ S∇̄ with σ(f) = y0, τ(f) = y1. Using

Theorem 2.12, we see that f ∈ S∇̄g,K

Theorem 3.9. Let M be a connected manifold, (g, P
p−→ M,A0) be a triple

consisting of a Riemannian metric g on M , a principal K-bundle P on M , and a
connection A0 on P . Denote by C0 ∈ A(O(M)) the Levi-Civita connection on the
orthonormal frame bundle O(M) of (M, g). The following conditions are equivalent:

(1) (g, P
p−→ M,A0) is locally homogeneous.

(2) (g, P
p−→ M,A0) is infinitesimally homogeneous.

(3) There exists a pair (C,A) ∈ A(O(M))×A(P ) such that

∇CRC = 0, ∇CTC = 0, ∇CAFA = 0, ∇CA(A−A0) = 0 .

Proof. The implication (1)⇒(2) is obvious, and the implication (2)⇒(3) stated
by Theorem 2.4. For the implication (3)⇒(1), let ∇̄ be the connection associated

with the pair (C,A). Let (x0, x1) ∈M ×M . By Lemma 3.8 there exists ϕ ∈ S∇̄g,K
such that y0 := s(ϕ) ∈ Px0

, y1 := t(ϕ) ∈ Px1
. The orbit ϕK is a submanifold

of S∇̄g,K which is mapped diffeomorphically onto y0K via s, and onto y1K via t.

Using [God, Théorème 3.3.1] it follows that there exists an open neighbourhood

U ⊂ S∇̄g,K of ϕK in S∇̄g,K which is mapped injectively onto an open neighbour-
hood U of y0K via s, and is mapped injectively onto an open neighbourhood V of
y1K via t. Since K is compact, we may suppose that U (hence also U and V) is
K-invariant. U defines a K-equivariant, ∇̄-affine isomorphism U → V which maps
A0U onto A0V and induced an isometry p(U) := U → V := p(V). This shows that

(g, P
p−→ M,A0) is locally homogeneous.
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For the case when (M, g) is complete, we have

Theorem 3.10. Let (g, P
p−→ M,A0) be a locally homogeneous triple with M

connected. If (M, g) is complete, then the map S∇̄g,K/K → M induced by s is a

covering map. If (M, g) is complete and M is simply connected, then any germ

ϕ ∈ S∇̄g,K can be extended to a unique bundle isomorphism Φ : P → P which covers

an isometry M → M , and has the property Φ∗(A0) = A0. In particular, for any
(x, x′) ∈M ×M there exists such a bundle isomorphism with Φ(Px) = Px′ .

Proof. We use the same method as in the proof of Proposition 3.4, Corollary
3.6. The fact that S∇̄g,K/K → M is a covering map is obtained using parallel

transport with respect to ∇̄ along A-horizontal lifts of ∇C-geodesics in M .

We can prove now our main theorem stated in the introduction

Theorem 3.11. Let M be a compact manifold, and K be a compact Lie group.
Let π : M̃ → M be the universal cover of M , Γ be the corresponding covering
transformation group. Then, for any locally homogeneous triple (g, P

p−→ M,A)
with structure group K on M there exists

(1) A connection B on the pull-back bundle Q := π∗(P ).

(2) A closed subgroup G ⊂ Iso(M̃, π∗(g)) acting transitively on M̃ which con-
tains Γ and leaves invariant the gauge class [B] ∈ B(Q).

(3) A lift j : Γ → GBG (Q) of the inclusion monomorphism ιΓ : Γ → G, where
GBG (Q) stands for the group of automorphisms of (Q,B) which lift trans-
formations in G.

(4) An isomorphism between the Γ-quotient of (π∗(g), Q,B) and the initial

triple (g, P
p−→ M,A).

Proof. Let G ⊂ Iso(M̃, g̃) be the subgroup defined by

G :=
{
ψ ∈ Iso(M̃, g̃)| ∃Ψ : Q→ Q ψ-covering bundle isom., Ψ∗(B) = B

}
.

Using the fact that K is compact, it follows by Lemma 3.12 below, that G is a
closed subgroup of the Lie group Iso(M̃, g̃). Note that Lemma 3.12 applies because

the action of the Lie group Iso(M̃, g̃) on M̃ is smooth.

Applying Theorem 3.10 to (π∗(g), Q,B), it follows that G acts transitively on

M̃ , and leaves invariant the gauge class [B]. Moreover, the definition of G shows
that it contains Γ. The lift j is obtained as follows: for ϕ ∈ Γ we define j(ϕ) : Q→ Q
by

j(ϕ)(x̃, y) := (ϕ(x̃), y)∀(x̃, y) ∈ Q := M̃ ×π P .
Note that the map Γ 3 ϕ 7→ j(ϕ) ∈ GBG (Q) is group morphism (as required).

Lemma 3.12. Let M be a differentiable manifold, K be a compact Lie group,
p : P →M , p′ : P ′ →M be principal K-bundles on M , and A ∈ A(P ), A′ ∈ A(P ′)
be connections on P , P ′ respectively. Let α : L ×M → M be a a smooth action
of a Lie group L on M . For l ∈ L denote by ϕl : M → M the corresponding
diffeomorphism. The subspace

LAA′ := {l ∈ L| ∃Φ ∈ Homϕl(P, P
′) such that Φ∗(A′) = A}

is closed in L. In the special case P = P ′, A = A′, the obtained subset LAA is a
Lie subgroup of L.
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Proof. Let (ln)n∈N be sequence in LAA′ converging to an element l∞ ∈ L.
We will prove that l∞ ∈ LAA′ .

Let V ⊂ TeL a sufficiently small convex neighborhood of 0 in the tangent space
l = TeL of L at its unit element e, such that the exponential map exp : TeL → L
induces a diffeomorphism E : V → U . The map η : [0, 1]× U → U defined by

η(t, l) = E(tE−1(l)))

is a smooth homotopy joining the constant map e on U to idU . Moreover one has

lim
l→e

η(t, l) = e (35)

uniformly on [0, 1]. For any l ∈ U and x ∈M we obtain a smooth path γlx : [0, 1]→
M given by

γlx(t) = ϕη(t,l)(x)

which joins x to ϕl(x). For l ∈ U denote by γl : [0, 1] × M → M the map
(t, x) 7→ γlx(t). Denoting by pM : [0, 1]×M → M the projection on the M -factor,
and using (35) we get

lim
l→e

γl = pM (36)

in the weak topology C∞w ([0, 1]×M,M).
Fix any connection B′ on P ′. For any l ∈ U we get a ϕl-covering automorphism

Ψl ∈ Homϕl(P
′, P ′) defined by

Ψl(y
′) = {γ̃lp′(y′)}

B′

y′

where {γ̃lp′(y′)}
B′

y′ is the B′-horizontal lift of γlp′(y′) with initial {γ̃lp′(y′)}
B′

y′ (0) = y′.

Using (36) we get

lim
l→e

Ψl = idP ′ (37)

in the weak topology C∞w (P ′, P ′). Put

λn := l∞l
−1
n .

Since limn→∞ ln = l∞ we may suppose that λn ∈ U for any n. Let Φn ∈
Homϕln

(P, P ′) such that Φ∗n(A′) = A, and note that

Σn := Ψλn ◦ Φn

is a ϕl∞ -covering bundle morphism with the property

(Σn)∗(A) = (Ψλn)∗(A
′).

Using (37) and limn→∞ λn = e, we obtain

lim
n→∞

(Σn)∗(A) = A′

in the Fréchet affine space A(P ′). The claim follows now from Lemma 3.13 below.

Lemma 3.13. Let K be a compact Lie group, p : P → M , p′ : P ′ → M ′ be
principal K-bundles on M and M ′, and A ∈ A(P ), A′ ∈ A(P ′) be connections on
P , P ′ respectively. Let ϕ : M → M ′ be a smooth map and (Φn)n be a sequence
in Homϕ(P, P ′) such that limn→∞ Φ∗n(A′) = A. Then there exists a subsequence
(Φnk)k of (Φn)n which converges (in the weak C∞-topology) to a morphism Φ∞ ∈
Homϕ(P, P ′) satisfying Φ∗∞(A′) = A.
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Proof. It suffices to prove the claim in the special case when M ′ = M ,
ϕ = idM . Indeed, using Remark 1.4 (see section 1.2) we obtain morphisms Φ0

n ∈
HomidM (P,ϕ∗(P ′)) such that

lim
n→∞

(Φ0
n)∗(ϕ∗(A′)) = A

Since the bijection given by Remark 1.4 is a homeomorphism with respect to the
weak C∞-topology it suffices to prove the claim for the sequence of idM -covering
morphisms (Φ0

n)n.
From now we suppose that M ′ = M , ϕ = idM , Φn ∈ HomidM (P, P ′). We will

use ideas form gauge theory [DK, section 2.3.7]. Note that

Fn := Φ−1
1 ◦ Φn ∈ HomidM (P, P ) = G(P ) = Γ(P ×ι K),

where G(P ) is the gauge group of P and ι : K → Aut(K) is the interior mor-
phism defined by ι(k)(u) = kuk−1. Therefore we have a sequence (Fn)n of gauge
transformations of P with the property

lim
n→∞

(Fn)∗(A) = Φ∗1(A′) =: A1. (38)

Fix an embedding ρ : K → O(N), and let E := P×ρRN be the Euclidian associated
bundle. Any gauge transformation F ∈ G(P ) can be identified with a section in
the endomorphism bundle End(E), and via this identification one has

F∗(A) = A− (∇AF )F−1,

where ∇A is the linear connection induced by A on End(E). Therefore, putting
Bn := (Fn)∗(A), we get

∇AFn = (A−Bn)Fn (39)

where, by (38),

lim
n→∞

Bn = A1 (40)

in the Fréchet C∞-topology of the affine space A(P ). Since K is compact, Fn is
uniformly bounded on M . On the other hand by (40) the sequence (A − Bn)n is
bounded in the Fréchet space Γ(Λ1

M ⊗ ad(P )) ⊂ Γ(Λ1
M ⊗End(E)). Using (39) and

a standard bootstrapping procedure we see that all partial derivatives of Fn (with
respect to local coordinates in M and trivializations of P ) are uniformly bounded
on any compact subset of M . Using a well-known combination of the Arzela-Ascoli
theorem and the diagonal argument we obtain a subsequence (Fnk)k of (Fn) which
converges in Γ(End(E)) (with respect to its Fréchet C∞-topology) to a section
F∞ ∈ Γ(End(E)). Since ρ(K) is closed in gl(N,R), it follows that G(P ) is closed
in Γ(End(E)), hence F∞ ∈ G(P ). Replacing n by nk and taking k →∞ in (39) we
get ∇AF∞ = (A− A1)F∞, i.e. A1 = (F∞)∗(A). It suffices to put Φnk = Φ1 ◦ Fnk ,
Φ∞ := Φ1 ◦ F∞.

Remark 3.14. Theorem 3.11 yields a closed subgroup G ⊂ Iso(M̃, g̃) which

acts transitively on M̃ . In general this group will not be connected. The connected
component G0 ⊂ G of id ∈ G still acts transitively on M̃ (see Lemma 3.16 below)
but, in general, it will not contain Γ. On the other hand, if M is orientable it
follows that G∩ Iso+(M̃, g̃) still satisfies the conclusion of the theorem. Therefore,

under this assumption Theorem 3.11 holds with G ⊂ Iso+(M̃, g̃).



3. THE MAIN THEOREMS 37

Remark 3.15. With the notations of Remark 3.14 put Γ0 := Γ∩G0. It is easy
to see that Γ0\G0 can be identified with the connected component of Γ ∈ Γ\G,
therefore the compactness of Γ\G implies the compactness of Γ0\G0. This shows

that G0 is a connected, subgroup of Iso+(M̃, g̃) which acts transitively on M̃ and is

unimodular. In many interesting cases these properties implies G0 = Iso+(M̃, g̃).

Lemma 3.16. Let (M, g) be a complete, connected Riemannian manifold, and
G ⊂ Iso(M, g) be a closed subgroup of the group of isometries Iso(M, g). If G
acts transitively on M , then the connected component of identity G0 ⊂ G also acts
transitively on M .

Proof. For every class ξ ∈ G/G0, choose a representative ψξ ∈ ξ. In other
words one has

ξ = G0ψξ ∀ξ ∈ G/G0,

hence G =
⋃
ξ∈G/G0

G0ψξ. Fix x0 ∈ M . Since G acts transitively on M , we have

M = Gx0. Therefore

M =
⋃

ξ∈G/G0

G0ψξ(x0). (41)

But G0 is a closed subgroup of Iso(M, g), hence its action on M is proper [Ra,
Theorem 4]. Therefore the G0-orbits are embedded closed submanifolds of M . If
(by reductio ad absurdum) the G0-action on M were not transitive, all these orbits
would be submanifolds of dimension strictly smaller than dim(M). But the quotient
set G/G0 is at most countable, hence formula (41) would lead to a contradiction.

Theorem 3.11 shows that:

Corollary 3.17. Let M be a connected compact manifold, and K be a compact
Lie group. Let π : M̃ →M be the universal cover of M , Γ be the corresponding cov-
ering transformation group. Then any locally homogeneous triple (g, P

p−→ M,A)
with structure group K on M can be identified with a Γ-quotient of a homogeneous
triple (g̃ = π∗(g), Q := π∗(P )

q−→ M̃,B) on the universal cover M̃ .





CHAPTER 3

Locally homogeneous and homogeneous triples. The
real-analytic case

The main result of this chapter is Theorem 3.11 of Chapter 2 in the real analytic
category. The proof is based on an extension theorem (Theorem 2.2) for real an-
alytic locally defined bundle morphisms which are compatible with a real analytic
connection. The main idea in the proof of this extension theorem is to reduce the
extension problem for bundle morphisms (which are compatible with a pair of con-
nections) to an extension problem for sections in an associated bundle (which are
parallel with respect to an associated connection). The proofs make use of [KN,
Lemma 2, p. 253] for analytic maps between manifolds endowed with analytic
distributions, so the analyticity condition plays a crucial role. The results in this
chapter appeared in [Ba].

1. Extension of local parallel sections

1.1. The space of parallel sections. Let p : P → M be a real analytic
principal K-bundle over a real analytic manifold M . Let λ : K × F → F be
an analytic action of K on an analytic manifold F , and let E := P ×λ F be the
associated bundle with fibre F . Let E µ−→ M be the projection map of the étale
space of the sheaf of (locally defined) analytic sections of the bundle pE : E →M .
In other words, a point of E is a germ [s]x where x ∈ X, and s ∈ Γan(U,E) is an
analytic section defined on an open neighbourhood U of x in M . Two pairs

(s : U → E, x), (s′ : U ′ → E, x′)

define the same germ (hence one has [s]x = [s′]x) if x = x′ and there exists U0 ⊂
U ∩U ′ such that s U0

= s′ U0
. The projection map µ is given by [s]x 7→ x. The space

E has a natural structure of a real analytic manifold, which is Hausdorff, but does
not have countable basis. The topology of E can be easily described as follows: Any
section s ∈ Γan(U,E) defines a section s̃ : U → E of E µ−→ M given by

s̃(x′) = [s : U → E, x′].

The sets of the form s̃(U) (where U is open in M and s ∈ Γan(U,E)) give a basis
for the topology of E . Note also that, for any open set U ⊂ M , the restriction
µ s̃(U) : s̃(U)→ U is a real analytic diffeomorphism.

Let now A be a real analytic connection on P , and let ΓA ⊂ TE be the associ-
ated connection on the associated bundle E. Denote by EA ⊂ E the open submani-
fold of E whose points are germs of ΓA-parallel sections, and by µA : EA → M the
restriction of µ to EA. With these notations we state

Theorem 1.1. Suppose that M is connected. If EA is non-empty, then the map
µA : EA →M is a covering map.

39
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Proof. We will prove that µA satisfies condition (1) in Lemma 1.2 below. Let
x0 ∈ M , and let h : U0 → B(0, r) ⊂ Rn be local chart of M around x0 such that
h(x0) = 0. We will show that µA maps diffeomorphically any connected compo-
nent of (µA)−1(U0) onto U0. Using Lemma 1.3 below, we obtain, for every point
σ = [s]x0

∈ (µA)−1(x0) a ΓA-parallel section sσ : U0 → A defining the germ σ. We
claim that the connected components of (µA)−1(U0) are precisely the sets s̃σ(U0),
which are obviously mapped diffeomorphically onto U0 via µA. We will first prove
that

Claim: The family (s̃σ(U0))σ∈(µA)−1(x0) is a partition of (µA)−1(U0).

Indeed, we obviously have s̃σ(U0) ⊂ (µA)−1(U0) for any σ ∈ (µA)−1(x0), hence⋃
σ∈(µA)−1(x0)

s̃σ(U0) ⊂ (µA)−1(U0).

The opposite inclusion is obtained as follows: let ν ∈ (µA)−1(U0), therefore there
exists x ∈ U0 and a ΓA-parallel section s defined around x such that ν = [s]x. Note
now that the pair (x, U0) also satisfies the assumption of Lemma 1.3, because there
obviously exists a chart hx : U0 → B(x, r) such that hx(x) = 0. Therefore the germ
ν extends to a ΓA-parallel section sν : U0 → E. Note that [sν ]x0 ∈ (µA)−1(x0),
and that the sections sν , s[sν ]x0

coincide, because they are both parallel and their

germ at x0 coincide. This proves that ν ∈ s̃[sν ]x0
(U0), which proves the inclusion

(µA)−1(U0) ⊂
⋃

σ∈(µA)−1(x0)

s̃σ(U0).

In order to complete the proof of the claim, it remains to note that the sets s̃σ(U0)
are pairwise disjoint. This follows using unique continuation for parallel sections.

Note now that any set s̃σ(U0) is open in (µA)−1(U0). Using the claim we see
that any such set is also closed in (µA)−1(U0) (as complement of an open set). Since
any such set is obviously connected, the theorem follows by Lemma 1.2.

Lemma 1.2. Let M , N be differentiable manifolds, and f : N →M be a locally
diffeomorphic map satisfying the following properties:

(1) any point x0 ∈ M has an open neighborhood U0 such that, for any con-

nected component Ũ0 of f−1(U0), the map Ũ0 → U0 induced by f is a
diffeomorphism,

(2) N is non-empty and M is connected.

Then f is a covering projection.

Usually in the definition of a covering projection, condition (1) and the surjec-
tivity of f are required. In our case, since N is non-empty and M is connected, the
first condition implies the surjectivity of f .

Lemma 1.3. Let x0 ∈ M , let [s]x0
∈ (µA)−1(x0), where s : U → E is ΓA-

parallel, and let h : U0 → B(0, r) ⊂ Rn be an analytic local chart of M around
x0 such that h(x0) = 0. Then e := [s]x0 extends to a ΓA-parallel section s0 ∈
Γan(U0, E), i.e. one has e = [s0]x0

, for a ΓA-parallel section s0 ∈ Γan(U0, E).
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Proof. Let s : U → E be a ΓA-parallel section defining the germ e, where U
is an open neighborhood of x0 in M . Let ε ∈ (0, r) be sufficiently small such that
Uε := h−1(B(0, ε)) ⊂ U . We will construct a real analytic section s0 ∈ Γan(U0, E)
whose restriction to Uε coincides with s Uε . Using [KN, Lemma 2, p. 253] it follows

that s0 is ΓA-parallel, which completes the proof.
The construction of s0 uses parallel transport along “radial” curves in U0. More

precisely, for any u ∈ U0 define the path γu : [0, 1]→ U0 by

γu(t) := h−1(th(u)),

and note that γu is a path in U0 joining x0 to u. Put e0 := s(x0) ∈ Ex0
. For

any u ∈ U0 let γ̃u : [0, 1] → E be the ΓA-horizontal lift of γu : [0, 1] → M with
initial condition γ̃u(0) = e0 (see section 1.1). Therefore, γ̃u(0) = e0, and for every
t ∈ [0, 1], one has

d

dt
γ̃u(t) ∈ ΓAγ̃u(t), pE ◦ γ̃u(t) = γu(t).

Using the analycity of the map (t, u) 7→ γ̃u(t), and a standard theorem on the
analycity of solutions of ordinary differential equations with respect to parameters,
we see that the map u 7→ s0(u) := γ̃u(1) is analytic. On the other hand one has

(pE ◦ s0)(u) = pE(γ̃u(1)) = γu(1) = u.

It remains to prove that s0 Uε = s Uε . For this, it suffices to note that for any

u ∈ Uε the paths s0 ◦ γu, s ◦ γu are both ΓA-horizontal lifts of γu with the same
initial condition e0.

1.2. The extension theorem for local parallel sections. In this section
we prove an extension theorem for locally defined parallel sections in analytic as-
sociated bundles. This result can be obtained using analytic continuation along
paths. This method is used for instance in [KN] for the problem of extending affine
mappings and isometric immersions. We will use a different method, which is base
on Theorem 1.1 proved in the previous section.

Theorem 1.4. Let p : P → M be a real analytic principal K-bundle over a
real analytic manifold M , λ : K × F → F a real analytic action of K on a real
analytic manifold F , and E := P ×λ F the associated bundle with fibre F . Let A
be an analytic connection on P and ΓA ⊂ TE the associated connection on E.

If M is simply connected, then any ΓA-parallel section s : U → E defined on
a connected, non-empty open set U ⊂M admits a unique ΓA-parallel extension on
M .

Proof. The ΓA-parallel section s defines a section s̃ ∈ Γ(U, EA). Let C ⊂ EA
be connected component of EA which contains the image s̃(U) of s̃. By Theorem
1.1 we know that µA : EA → M is a covering projection, hence the restriction
µA C : C →M of µA to C will also have this property.

But M is simply connected, hence this restriction will be an analytic diffeomor-

phism. The inverse map
(
µA C

)−1
: M → C ⊂ EA will define a parallel extension

of s.
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2. Extension of bundle isomorphisms

We will prove first an extension theorem for locally defined, id-covering bundle
isomorphisms intertwining two global connections:

Theorem 2.1. Let p : P → M , p′ : P ′ → M be real analytic principal K-
bundles over a real analytic manifold M , and A, A′ be analytic connections on P ,
P ′ respectively. Let U ⊂ M be a nonempty, connected open set, and Φ : PU → P ′U
be an idU -covering analytic isomorphism such that Φ∗(A′U ) = AU .

If M is simply connected, then Φ has a unique id-covering analytic extension
Φ̃ : P → P ′ such that Φ∗(A′) = A.

Proof. For a point x ∈M let I(P, P ′)x be the set of all isomorphisms ψ : Px →
P ′x of right K-spaces. Fixing a pair (y, y′) ∈ Px × P ′x, we obtain a diffeomorphism
I(P, P ′)x ' K. The union

I(P, P ′) :=
⋃
x∈M

I(P, P ′)x

has a natural manifold structure, and the obvious projection I(P, P ′) → M is a
locally trivial fibre bundle over M with fiber K. More precisely one can identify
I(P, P ′) (as a bundle over M) with the associated bundle

(P ×M P ′)×τ K,

where P ×M P ′ is regarded as a principal (K ×K)-bundle over M , and

τ : (K ×K)×K → K

is the action of K ×K on K defined by

τ((k1, k2), k) := k2kk
−1
1 .

The pair of connections (A,A′) defines a connection A×A′ on the product principal
bundle P ×M P ′. For a pair (y, y′) ∈ P ×M P ′ the horizontal space (A × A′)(y,y′)

is just

{(v, v′) ∈ Ay ×A′y′ | p∗(v) = p′∗(v
′)}.

The data of an idU -covering morphism Φ : PU → P ′U is equivalent to the data of a
section sΦ ∈ Γ(U, I(P, P ′)) (see Proposition 1.6 in the Appendix) . Moreover, by
the same proposition, one can prove that Φ∗(A′) = A if and only if the section sΦ

is ΓA×A
′
-parallel. With this remark the theorem follows from Theorem 1.4.

We can treat now the general case of a locally defined bundle morphism cover-
ing a globally defined map between the base manifolds:

Theorem 2.2. Let p : P → M , p′ : P ′ → M ′ be real analytic principal K-
bundles, and A, A′ be analytic connections on P , P ′ respectively. Let ϕ : M →M ′

be a real analytic map, U ⊂M be a non-empty, connected open set, and Φ : PU →
P ′ be a ϕ-covering analytic morphism such that Φ∗(A′) = AU .

If M is simply connected, then Φ has a unique ϕ-covering analytic extension
Φ̃ : P → P ′ for which Φ∗(A′) = A.

Proof. By Remark 1.4 in section 1.2, the data of a ϕ-covering analytic bundle
morphism φ : PU → P ′ for which Φ∗(A′) = AU is equivalent to the data of an idU -
covering analytic bundle isomorphism Φ0 : PU → ϕ∗(P ′)U for which Φ∗0((ϕ∗A′)U ) =
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AU . Here we denoted by ϕ∗(P ′) the bundle on M obtained as the pull-back of P ′

via ϕ : M →M ′. In other words one has

ϕ∗(P ′) := M ×M ′ P ′

regarded as a principal K-bundle on M via the projection on the first factor. Sim-
ilarly ϕ∗(A′) stands for the pull-back connection of A′ via ϕ. The connection form
of this pull-back connection is the pull-back of the connection form of A′ via the
second projection M ×(ϕ,p′) P

′ → P ′.
By Theorem 2.1 it follows that there exists an idM -covering analytic bundle

isomorphism Φ̃0 : P → ϕ∗(P ′), which extends Φ0 such that

(Φ̃0)∗(ϕ∗(A′)) = A.

But the data of such an isomorphism is equivalent to the data of a ϕ-covering
analytic bundle morphism Φ : P → P ′ such that Φ∗(A′) = A.

3. Analytic locally homogeneous triples on compact manifolds

Using our results we can now give a new proof (valid in the real-analytic frame-
work) of our main theorem (Theorem 3.11). More precisely we prove:

Theorem 3.1. Let M be a compact real analytic manifold, and (g, P
p−→ M,A)

be a real analytic locally homogeneous triple on M , where P
p−→ M is a K-principal

bundle with K compact. Let π : M̃ → M be the universal cover of M , Γ be the
corresponding covering transformation group, g̃ := π∗(g), q : Q := π∗(P ) → M̃ ,
and B := π∗(A). Then there exists

(1) A closed subgroup G ⊂ Iso(M̃, g̃) acting transitively on M̃ which leaves
invariant the gauge class [B] ∈ B(Q) and contains Γ,

(2) A lift j : Γ→ GBG (Q) of ιΓ : Γ→ G.

Proof. Let G ⊂ Iso(M̃, g̃) be the subgroup defined by

G :=
{
ψ ∈ Iso(M̃, g̃)| ∃Ψ : Q→ Q ψ-covering bundle isom., Ψ∗(B) = B

}
.

Using the fact that K is compact, it follows by Lemma 3.12 of Chapter 2 , that
G is a closed subgroup of the Lie group Iso(M̃, g̃). Note that Lemma 3.12 applies

because the action of the Lie group Iso(M̃, g̃) on M̃ is smooth. Using Theorem 2.2

one can prove that G acts transitively on M̃ as follows:

We have to show that for any two points x̃, x̃′ ∈ M̃ there exists ψ ∈ G such
that ψ(x̃) = x̃′. Put x := π(x̃), x′ := π(x̃′). Since (g, P

p−→ M,A) is locally
homogeneous, there exists open neighborhoods U , U ′ of x and x′, an isometry ϕ :
U → U ′ with ϕ(x) = x′, and a ϕ-covering bundle isomorphism Φ : PU → PU ′ such
that Φ∗(AU ′) = AU . We can assume of course that U and U ′ are simply connected.

Let Ũ (Ũ ′) be the connected component of π−1(U) (respectively π−1(U ′)) which

contains x̃ (respectively x̃′). The map π induces diffeomorphisms Ũ ' U , Ũ ′ '
U ′, and π-covering bundle isomorphisms QŨ ' PU , QŨ ′ ' PU ′ . Using these
identifications we obtain:

(1) an isometry ϕ̃ : Ũ → Ũ ′ with ϕ̃(x̃) = x̃′,

(2) a ϕ̃-covering bundle isomorphism Φ̃ : QŨ → QŨ ′ with the property

Φ̃∗(BŨ ′) = BŨ .
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Since M̃ is simply connected and complete, we obtain a global isometry

ψ : M̃ → M̃

extending ϕ̃ (see [Si], [KN, Theorem 6.3]). Applying Theorem 2.2 we obtain a
ψ-covering bundle isomorphism Ψ : Q → Q such that Ψ∗(B) = B. Therefore one
has ψ ∈ G. Since ψ(x̃) = x̃′ transitivity is proved.

Using the same arguments as in the proof of Theorem 3.11, we complete the
proof.



CHAPTER 4

Examples and applications. Moduli spaces of locally
homogeneous triples on Riemann surfaces

Many of the results presented here will appear in [BaTe].

1. Homogeneous connections. The moduli space of Biswas-Teleman

We begin with the following

Definition 1.1. [Ya, p. 30] A pair (G,H) consisting of a Lie group G and a
closed subgroup H ⊂ G is called reductive if h has a adH-invariant complement in
g.

Note that any pair (G,H) with H compact is reductive. Let (G,H) be a re-
ductive pair. An adH -invariant complement s of h in g defines a left invariant
connection on the principal H-bundle G→ G/H.

Let (G,K) be a pair of Lie groups, and H be a closed subgroup of G. Put

A(G,H,K) := {(χ, µ) ∈ Hom(H,K)×Hom(g/h, k) : µ ◦ adh = adχ(h) ◦ µ,∀h ∈ H}
Following [BiTe] we define

M(G,H,K) := A(G,H,K)/
K ,

where K acts on Hom(H,K)×Hom(g/h, k) by

k · (χ, µ) = (ιk ◦ χ, adk ◦ µ) ,

leaving the real algebraic variety A(G,H,K) ⊂ Hom(H,K) × Hom(g/h, k) invari-
ant. M(G,H,K) will be called the moduli space associated with (G,H,K).

Let now N be connected differentiable n-manifold, G a connected Lie group
and α : G × N → N be transitive left action of G on N . Fix x0 ∈ N , and let
H ⊂ G be the stabiliser of x0 in G. The map g 7→ gx0 induces a diffeomorphism
G/H → N , and G can be regarded as a principal H-bundle on N .

We will denote by αg : N → N the diffeomorphism associated with g ∈ G.
Let K be a Lie group. We are interested in the classification (up to isomorphism
in the obvious sense) of triples (P,A, β), where P is principal K-bundle on N , A a
connection on P , and β : G× P → P a G-action on P by K-bundle isomorphisms,
which covers α and is compatible with A. In other words β is a G action on P such
that

(1) For any g ∈ G, the associated diffeomorphism βg is an αg-covering bundle
isomorphism.

(2) For any g ∈ G, βg leaves the connection A invariant, i.e. β∗gA = A.

Definition 1.2. [BiTe] A triple (P,A, β) satisfying the above conditions will
be called a G-invariant (or G-homogeneous) K-connection on N .
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The group G acts on the set of all gauge classes of K-connections (on principal
K-bundles) on N [BiTe]. If (P,A, β) is G-homogeneous K-connection, then the
gauge class [A] is G-invariant, but, in general, the G-invariance of [A] does not
imply the existence of an action β for which (P,A, β) is G-homogeneous. The
classification of G-homogeneous K-connections is substantially more difficult than
the classification of G-invariant gauge classes.

We will denote by Φα,K the set of isomorphism classes of G-homogeneous K-
connections on N .

Theorem 1.3. Suppose that α : G × N → N is a transitive action of G on
N . Fix x0 ∈ N , and let H ⊂ G be its stabiliser. Suppose that the pair (G,H) is
reductive. Then there exists a natural identification M(G,H,K)→ Φα,K .

The identification given by Theorem 1.3 is explicit. A pair (χ, µ) ∈ A(G,H,K)
defines a principal K-bundle Pχ endowed with an α-covering G-action by bundle
isomorphisms, and an invariant connection Aχ,µ on this bundle. Pχ is just the
associated bundle G ×χ K. This bundle comes with a distinguished point y0 :=
[eG, eK ]. Identifying the tangent space Tx0

N with s one has an explicit formula for
the curvature form FAχ,µ at the point y0 ∈ Pχ:

Fχ,µ(u, v) = −χ∗([u, v]h) + [µ(u), µ(v)]− µ([u, v]) . (42)

where u, v ∈ Ty0(Pχ). Since Aχ,µ is G-invariant, this formula determines the
curvature of Aχ,µ at any point.

1.1. Examples: PSL(2,R)-homogeneous connections on the hyper-
bolic plane. Let H be the hyperbolic plane. We recall that the group of orientation
preserving isometries of H can be identified with G := PSL(2,R). Choosing a base
point x0 ∈ H in a appropriate way, the stabiliser H = Gx0

will coincide with the
image of SO(2) in PSL(2,R) (which is the quotient SO(2,R) by {±I2}). Therefore

H =

{
ht :=

[(
cos(t/2) − sin(t/2)
sin(t/2) cos(t/2)

)]
t ∈ [0, 2π]

}
⊂ PSL(2,R) . (43)

Identifying g with sl(2,R), we have h = R
(

0 −1
1 0

)
, and an adH -invariant com-

plement of h in g is

s :=

〈(
1 0
0 −1

)
,

(
0 1
1 0

)〉
.

Put

a :=

(
0 −1
1 0

)
, b :=

(
1 0
0 −1

)
, c :=

(
0 1
1 0

)
.

We have
[a, b] = 2c, [a, c] = −2b, [b, c] = −2a .

The action adH on s is given by

adht(ub+ vc) = (b, c)

(
cos(t) − sin(t)
sin(t) cos(t)

)(
u
v

)
∀
(
u
v

)
∈ R2 ,

so H acts on s by rotations. Let K be Lie group. Identifying H with S1 via the map
ht 7→ eit, we obtain an identification

A(PSL(2,R), H,K) = {(χ, µ) ∈ Hom(S1,K)×HomR(s, k)| µ ∈ Homχ
S1(s, k)} , (44)
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where
Homχ

S1(s, k) := {µ ∈ HomR(s, k)| µ ◦Rζ = adχ(ζ)µ ∀ζ ∈ S1} .
In this formula we used the notation

Reit(ub+ vc) = adht(ub+ vc) = (b, c)

(
cos(t) − sin(t)
sin(t) cos(t)

)(
u
v

)
.

We identify HomR(s, k) with the complexification kC of k using the isomorphism I :
HomR(s, k)→ kC given by I(µ) = µ(c) + iµ(b). Using the identity I(µ ◦Rζ) = ζI(µ)
and putting

kCχ := {Z ∈ kC| adχ(ζ)(Z) = ζZ, ∀ζ ∈ S1}
(the maximal complex linear subspace of kC on which S1 acts with weight 1 via
adχ), we obtain a further identification

A(PSL(2,R), H,K) = {(χ,Z) ∈ Hom(S1,K)× kC| Z ∈ kCχ} . (45)

For k ∈ Z let χk : S1 → S1 be the group morphism defined by χk(ζ) = ζk, and
let

τ : S1 → SU(2), θ : S1 → PU(2) = SU(2)/{±I2}
be the standard monomorphisms S1 → SU(2), S1 → PU(2) given respectively by:

τ(ζ) :=

(
ζ 0
0 ζ̄

)
, θ(eit) = [τ(eit/2)] .

The image of τ (θ) is a maximal torus of SU(2) (respectively of PU(2))), and any
monomorphism S1 → SU(2) (S1 → PU(2)) is equivalent with τ (θ) modulo an
interior automorphism of SU(2) (respectively PU(2)). Moreover, any morphism
χ : S1 → SU(2) (χ : S1 → PU(2)) is equivalent with a morphism of the form τk :=
τ ◦ χk (respectively θk := θ ◦ χk) with k ∈ N (modulo an interior automorphism).
Using these remarks we obtain

M(PSL(2,R), H, S1) = {[χk, 0]| k ∈ Z} . (46)

It is important to describe explicitly the homogeneous PSL(2,R)-connection which
corresponds to the class [χk, 0]. For k = 1 the bundle Pχ1

can be identified with the
S1-bundle PSL(2,R) → PSL(2,R)/H = H, which is the principal bundle of unit
length tangent vectors of H or, equivalently, the principal bundle associated with
the oriented Euclidian 2-bundle TH. The connection Aχ1,0 coincides with Levi-
Civita connection CH of this principal bundle [BaTe], which is obviously PSL(2,R)-
homogeneous. The connection Aχk,0 can be identified with the tensor power C⊗kH
of this S1-connection.

Remark 1.4. Let Γ ⊂ PSL(2) be a discrete subgroup acting properly discon-
tinuously on H with compact quotient, and let (M, gM ) be the hyperbolic Riemann
surface M := H/Γ. The Γ-quotient of (Pχ1

, CH) can be identified with (PM , CM )
where PM is SO(2)-frame bundle of M (regarded as a principal S1-bundle), and
CM is the Levi-Civita connection of the hyperbolic Riemann surface M . Similarly
the Γ-quotient of (Pχk , Aχk,0) can be identified with the tensor power (P⊗kM , C⊗kM ).

The Chern class of P⊗kM is k(2− 2g).

In this way (using quotients of PSL(2,R)-homogeneous S1-connections on H)
we obtain only very special locally homogeneous S1-triples on M : only the ten-
sor powers of the canonical locally homogeneous triple (gM , PM , CM ) given by the
Levi-Civita connection on M . In the next section we will see that any S1-triple
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(gM , P,A) with A Yang-Mills is locally homogeneous, and we will show how all
these Yang-Mills triples can be obtained as quotients of homogeneous connections
on H. We will have to replace the group PSL(2,R) by an S1-extension of it (see
Remark 3.2 in Section 3 Chapter 1).

In a similar way we obtain:

M(PSL(2,R), H, SU(2)) = {[τk, 0]| k ∈ N} .
This shows that any PSL(2,R)-homogeneous SU(2)-connection on SU(2) has a
PSL(2,R)-homogeneous S1-reduction, so it coincides with the SU(2)-extension of
a PSL(2,R)-homogeneous S1-connection.

The case K = PU(2) is more interesting: for k ∈ N\{1} one has Homθk
S1(C, k) =

{0}, but
Homθ1

S1(s, k) = Cµ0 , (47)

where µ0 : s→ su(2) is given by

µ0(ub+ vc) :=

(
0 u+ iv

−(u− iv) 0

)
.

In (47) we have used the complex structure on Hom(s, su(2)) given by the iso-
morphism I : Hom(s, su(2)) → su(2)C introduced above. The centraliser of θ1 is
im(θ1) ' S1, and it acts with weight 1 on the complex line Homθ1

S1(s, k). This shows
that

M(PSL(2,R), H,PU(2)) = {[θk, 0]| k ∈ N} ∪M1 ,

where

M1 = {[θ1, rµ0]| r ∈ (0,∞)} ' (0,∞) .

The curvature of the connection Aθ1,rµ0
can be computed using formula (42),

and the result is

Fθ1,rµ0(b, c) = (1 + r2)

(
2i 0
0 −2i

)
. (48)

2. Locally homogeneous S1 and PU(2)-triples on hyperbolic Riemann
surfaces

We start with a simple consequence of Theorem 3.9 of Chapter 2.

Proposition 2.1. Let (M, g) be a connected, oriented, compact Riemann sur-
face endowed with a Riemannian metric with constant curvature, let P a principal
S1-bundle on M and A a connection on M . Then (g, P,A) is locally homogeneous
if and only if A is Yang-Mills.

Proof. Recall that, by definition, an S1-connection A is Yang-Mills if and
only if its curvature FA ∈ iA2(M) is harmonic [DK], [Te]. Writing FA = ifAvolg,
with fA ∈ C∞(M,R), we see that A is Yang-Mills if and only of fA is constant.
Therefore, if (g, P,A) is locally homogeneous we see (using the fact that volg is
invariant under isometries up to sign) that |fA| is constant, so fA is constant, so
A is Yang-Mills. Conversely if fA is constant, then FA is ∇C0 ⊗ ∇A-parallel, so
(g, P,A) is infinitesimally homogeneous, so locally homogeneous by Theorem 3.9 of
Chapter 2.



2. LOCALLY HOMOGENEOUS S1 AND PU(2)-TRIPLES 49

This shows that, for a fixed integer k ∈ Z, the set of isomorphism classes of
locally homogeneous triples (g, P,A) with c1(P ) = k can be identified with the
moduli space of Yang-Mills connections on a Hermitian line bundle of Chern class
k, which is a torus of dimension 2g (see [Te]).

The Yang-Mills S1-connections on hyperbolic Riemann surfaces can be obtained
as quotients of homogeneous S1-connections on H as follows (see [BaTe]):

Let q : ˜PSL(2,R) → PSL(2,R) be the universal cover of PSL(2,R), and let γ0

be the generator of ker(q) = π1(PSL(2,R)) given by [0, 2π] 3 t 7→ ht (see (43)). For
any a ∈ R define the group Ĝa by

Ĝa :=
˜PSL(2,R)× S1/

{(γk0 , e−2πaki)| k ∈ Z} .

We obtain a short exact sequence

1→ S1 ja−−→ Ĝa
qa−−→ PSL(2,R)→ 1 ,

where ja(z) = [e, z], qa([γ, ζ]) := q(γ). The pre-image H̃ := q−1(H) ⊂ ˜PSL(2,R)
can be identified with the universal cover of H, and is isomorphic to R. We write
this group as H̃ = {h̃t| t ∈ R}, where t 7→ h̃t is a group isomorphism, and h̃t is a
lift of ht. Therefore γ0 = h̃2π. The pre-image Ĥa := q−1

a (H) can be identified with
the quotient

H̃ × S1/
{(γk0 , e−2πaki)| k ∈ Z} .

This group is abelian, and fits in the short exact sequence

1→ S1 ia−−→ Ĥa
pa−−→ H → 1 ,

where ia, pa are defined as ja, qa. This short exact sequence has a left splitting
χa : Ĥa → S1 given by

χa([h̃t, ζ]) := eitaζ ,

so Ĥa ' S1 × S1. We endow H with the action αa : Ĝa × H → H induced by the
standard PSL(2,R)-action via qa. The stabiliser of x0 is the group q−1

a (H) = Ĥa.
According to the general Theorem 1.3, the pair (χa, 0) defines a Ĝa-homogeneous
connection (Pχa , Aχa,0, βa). We refer to [BaTe] for the following result, which de-
scribes all Yang-Mills S1-connections on hyperbolic Riemann surfaces as quotients
of homogeneous connections on H.

Proposition 2.2. Let Γ ⊂ PSL(2) be a discrete subgroup acting properly dis-
continuously on H with compact quotient, and let (M, gM ) be the hyperbolic Rie-
mann surface M := H/Γ. Let P be a principal S1-bundle on M , and A be a

Yang-Mills connection on P . Put a := c1(P )
2−2g . There exists a lift j : Γ → Ĝa of the

embedding monomorphism Γ ↪→ PSL(2,R), and an isomorphism

(P,A) ' (Pχa , Aχa,0)/
Γ ,

where Γ acts on Pχa via j.

Note that, by Proposition 2.1 and Remark 3.15, this result describes all locally
homogeneous S1-triples on hyperbolic Riemann surfaces as quotients of of homo-
geneous connections on H on hyperbolic Riemann surfaces.
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In a similar way we obtain the classification of all locally homogeneous PU(2)-
triples [BaTe]:

Proposition 2.3. Let Γ ⊂ PSL(2) be a discrete subgroup acting properly dis-
continuously on H with compact quotient, and let (M, gM ) be the hyperbolic Rie-
mann surface M := H/Γ. Let P be a principal PU(2)-bundle on M , and A be a
locally homogeneous connection on P . Let B be the pull-back connection on the
pull-back bundle Q on H. Then

(1) If B is irreducible (i.e. it has trivial stabiliser), then there exists r > 0
and an isomorphism between (P,A) and the Γ-quotient of (Pθ1 , Aθ1,rµ0).

(2) If the stabiliser of B is S1, then (gM , P,A) can be identified with the
PU(2)-extension of a locally homogeneous S1-triple.

(3) If the stabiliser of B is PU(2), then A is flat, so the pair (P,A) is defined
by a representation π1(M) = Γ→ PU(2).



CHAPTER 5

Appendix

1. Connections in associated bundles. Bundle isomorphisms

1.1. Parallel transport in associated bundles. Let M be a differentiable
n-manifold, K be a Lie group, and p : P → M be a principal K-bundle on M ,
endowed with a connection A. Let α : [t0, t1] → M be a smooth curve in M . By
a well known, fundamental theorem in Differential Geometry it follows that any
point u0 ∈ Pα(t0) := p−1(α(t0)) there is a unique horizontal lift αu0

: [t0, t1] → P
such that αu0(t0) = u0 [KN, Proposition 3.1].

We also have an existence and unicity horizontal lift theorem for associated
bundles. More precisely, let p : P → M be a principal K-bundle endowed with a
connection A, λ : K×F → F be a smooth action of K on a differentiable manifold
F , and let E := P ×λ F be the associated bundle with fibre F . The connection A
is a horizontal rank n-distribution on P , which defines in the obvious way a rank
n-distribution on P × F , whose projection on E = (P × F )/K is a well defined
horizontal rank n-distribution on E. This distribution will be called the connection
on E induced by A, and will be denoted by ΓA. With this definitions we have:

Proposition 1.1. Let p : P → M be a principal K-bundle endowed with a
connection A, λ : K × F → F be a smooth action of K on a manifold F , and
let E := P ×λ F be the associated bundle with fibre F . Let α : [t0, t1] → M be a
smooth curve in M . For any point e0 ∈ Eα(t0) there is a unique ΓA-horizontal lift
αe0 : [t0, t1]→ E such that αe0(t0) = e0.

A proof of this results is sketched in [KN, p. 88]. In this section we give a
detailed proof for completeness.

Proof. The Lie group K acts freely on P × F from the right by

(u, y, k) 7→ (uk, k−1y).

By definition the associated bundle E := P×λF is the quotient manifold (P×F )/K,
and the projection q : P×F → E is principal K-bundle, which comes with a natural
connection B given by

B(u,y) := Au × TyF ∀(u, y) ∈ P × F.

The bundle projection p : P →M induces a locally trivial submersion pE : E →M ,
such that the following diagram is commutative:

P × F
q- E

P

p1
? p- M .

pE
?
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In other words the quotient map q : P×F → E is fiber preserving map over M . For
a pair (u, y) ∈ P ×F put [u, y] := q(u, y). With this notation the map pE : E →M
is given by pE([u, y]) := p(u). By the definition of ΓA, for a point e := [u, y] ∈ E
we have

ΓAe := q∗(u,y)(Au × {0y})
where {0y} is the zero subspace of TyF . Put x0 := α(t0), and let e0 = [u0, y0] be a
point in the fiber Ex0 . It follows u0 ∈ p−1(x0).

By the classical horizontal lift theorem [KN, Proposition 3.1], there exists
a A-horizontal lift αu0

: [t0, t1] → P . Therefore for every t ∈ [t0, t1] we have
α′u0

(t) ∈ Aαu0
(t). It suffices to note that the curve αe0 : [t0, t1]→ E defined by

αe0(t) := [αu0(t), y0]

is a ΓA-horizontal lift of α satisfying the initial condition αe0(t0) = e0.
To prove unicity, let β : [t0, t1]→ E be a ΓA-horizontal lift of α with β(t0) = e0,

and let

β(u0,y0) = (βP(u0,y0), β
F
(u0,y0)) : [t0, t1]→ P × F

be a B-horizontal lift of β satisfying the initial condition β(u0,y0)(t0) = (u0, y0).
Since β(u0,y0) is a B-horizontal curve, it follows that

β′(u0,y0)(t) ∈ Bβ(u0,y0)(t) ∀t ∈ [t0, t1], (49)

and, since β(u0,y0)(t0) = (u0, y0) is a lift of a ΓA-horizontal curve, it follows that

β′(u0,y0)(t) ∈
{

(q∗)
−1(ΓA)

}
β(u0,y0)(t)

∀t ∈ [t0, t1]. (50)

But it is easy to show that the intersection B ∩ (q∗)
−1(ΓA) of the distributions B,

(q∗)
−1(ΓA) ⊂ TP×F coincides with the distribution Ã ⊂ TP×F given by

Ã(u,y) := Au × {0y}.

Therefore, by (49), (50) it follows that βP(u0,y0) is A-horizontal, and βF(u0,y0) is con-

stant. Using the unicity part of [KN, Proposition 3.1], we obtain βP(u0,y0) = αu0 ,

hence β(u0,y0)(t) = (αu0
(t), y0), hence β(u0,y0) = αe0 .

Remark 1.2. A similar theorem holds for general fiber bundles endowed with
a connection, but one has to assume that the fiber is compact [Mo].

1.2. Pull back bundles and pull back connections. Let M and M ′ be
smooth manifolds, K a Lie group, and ϕ : M → M ′ be a smooth map. Let p′ :
P ′ → M ′ be a principal K-bundle on M ′. Recall that the pull-back bundle ϕ∗(P ′)
is defined by

ϕ∗(P ′) := M ×M ′ P ′ = (ϕ× p′)−1(∆M ′),

where ϕ× p′ : M × P ′ →M ′ ×M ′ denotes the product map, and ∆M ′ ⊂M ′ ×M ′
is the diagonal submanifold. One can check that ϕ×p′ is transversal to ∆M ′ , hence
M ×M ′ P ′ is a submanifold of M × P ′, whose tangent space at a point (x, y′) is

T(x,y′)(M ×M ′ P ′) = {(u,w) ∈ TM × TP ′ | ϕ∗(u) = p′∗(w)}.
Note that set theoretically one has

ϕ∗(P ′) =
⊔
x∈M

P ′ϕ(x).
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The projections p1 : ϕ∗(P ′)→M ′, p2 : ϕ∗(P ′)→ P ′ fit in the commutative diagram

ϕ∗(P ′)
p2- P ′

M

p1
? ϕ- M ′

p′
?

in which p1 is a K-principal bundle on M with respect to the right K-action in-
duced from P ′.

Let A′ be a connection on P ′ and ωA
′ ∈ A1(P, k) its connection form. By

definition the pull-back connection ϕ∗(A′) is the connection on ϕ∗(P ′) defined by
the connection form p∗2(ωA

′
). With this definition we have for any pair (x, y′) ∈

ϕ∗(P ′):

ϕ∗(A′)(x,y′) = {(u,w) ∈ TxM × Ty′(P )| ϕ∗x(u) = p′∗y′(w), w ∈ A′y′}

= {(u,w) ∈ TxM ×A′y′ | ϕ∗x(u) = p′∗y′(w)}.

Definition 1.3. Let M , M ′ be smooth manifolds, K a Lie group, and ϕ : M →
M ′ be a smooth map. Let P

p−→ M , P ′
p′−−→ M ′ be principal K-bundles on M , M ′

respectively. We denote by Homϕ(P, P ′) the set of ϕ-covering bundle morphisms
P → P ′ which are compatible with the group morphism idK [KN, section I.5].

For a morphism Φ ∈ Homϕ(P, P ′) and a connection A′ on P ′ one defines the
pull-back connection Φ∗(A′) using the connection form Φ∗(ωA

′
) [KN, Proposition

6.2].

Remark 1.4. With the notations above the following holds:

(1) The map Homϕ(P, P ′)→ HomidM (P,ϕ∗(P ′)) given by Φ 7→ Φ0, where

Φ0(y) := (p(y),Φ(y))

is bijective.
(2) For any connection A′ on P ′ and bundle morphism Φ ∈ Homϕ(P, P ′) one

has
Φ∗(A′) = Φ∗0(ϕ∗(A′)).

1.3. Bundle isomorphisms compatible with a pair of connections. Let
P , P ′ be K-principal bundles over a manifold M , and let (A,A′) ∈ A(P ) × A(P ′)
be a pair of connections. The goal of this section is the proof of Proposition 1.6,
which shows that the data of an id-covering bundle morphism Φ : P → P ′ with
the property Φ∗(A′) = A is equivalent to the data of an (A,A′)-parallel section
in a bundle I(P, P ′) associated with the fibre product P ×M P ′ and the action
τ : (K×K)×K → K given by ((k1, k2), k) 7→ k2kk

−1
1 (see section 2). The first part

of the following proposition is well-known. The second part can be checked easily.

Proposition 1.5. Let p : P → M be a principal K-bundle, α : K × F → F
be a smooth left action of K on a manifold F , and E := P ×K F be the associated
fiber bundle with fiber F . Denote by CK(P, F ) the space of smooth K-equivariant
maps P → F :

CK(P, F ) := {σ : P → F | σ(yk) = k−1σ(y) ∀y ∈ P, ∀k ∈ K}.
Then
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(1) The map F : CK(P, F )→ Γ(M,E) given by

σ 7→ sσ, sσ(x) := [y, σ(y)], where y ∈ Px,
is bijective.

(2) Let σ ∈ CK(P, F ), A be a connection on P , and ΓA be the induced con-
nection on E. The following conditions are equivalent:

(i) The section sσ is ΓA-parallel.
(ii) The restriction of σ∗y to the horizontal distribution of A vanishes.

Proof. (1) This result is well known. We mention only that the inverse of F
is the map s 7→ σs where, for a section s ∈ Γ(E), the equivariant map σs is defined
by the identity

s(p(y)) = [y, σs(y)],∀y ∈ P. (51)

(2) Let q : P × F → E be the quotient map. By (51) we know that

sσ(x) = [y, σ(y)] = q(y, σ(y)). (52)

Let v ∈ TxM , y ∈ p−1(x), and let w be a lift of v in TyP . Using (52) we obtain
easily:

s∗x(v) = q∗(y,σ(y))(w, σ∗y(w)). (53)

Recall that, by the definition of ΓA, we have q∗(y,σ(y))(Ay×{0}) = ΓAs(x). Therefore,

if σ∗ A = 0, then, choosing w to be the horizontal lift of v at y, we get s∗x(v) ∈ ΓAs(x).

Conversely, supposing that for every v ∈ TxM we have s∗x(v) ∈ ΓAs(x), we show that

σ∗ A = 0. Let y ∈ P , w ∈ Ay, and v = p∗(w). Using again (52) we see that

s∗(v) = q∗(w, σ∗(w)) ∈ q∗(Ay × {0}).
Therefore, there exists u ∈ Ay such that

(w − u, σ∗(w)) ∈ ker(q∗(y,σ(y))).

The projection on the first factor induces an isomorphism ker(q∗(y,σ(y))) → Vy,
where Vy ⊂ TyP denotes the vertical tangent space at y. Taking into account that
w − u ∈ Ay, we get w − u = 0, and σ∗(w) = 0.

Proposition 1.6. Let p : P → M , p′ : P ′ → M be K-principal bundles over
M , and let I(P, P ′) be the associated bundle (P ×M P ′) ×τ K. There exist a nat-
ural bijection S : Homid(P, P ′) → Γ(M, I(P, P ′)) between the space of id-covering
K-bundle isomorphisms and the space of sections Γ(M, I(P, P ′)) with the follow-
ing property: For any pair of connections (A,A′) ∈ A(P ) × A(P ′) the following
conditions are equivalent:

(i) Φ∗(A′) = A.

(ii) S(Φ) is ΓA×A
′
-parallel.

Proof. By Proposition 1.5 the space of sections Γ(M, I(P, P ′)) is naturally
identified with the space CK×K(P ×M P ′,K) of (K ×K)-equivariant maps P ×M
P ′ → K. Using this identification we will define a natural bijection

S : Homid(P, P ′)→ CK×K(P ×M P ′,K).

Let Φ ∈ Homid(P, P ′), and (y, y′) ∈ P ×M P ′. Since Φ(y) and y′ are in the same
fiber, there exists a unique element σΦ(y, y′) ∈ K such that Φ(y) = y′.σΦ(y, y′). It
is easy to see that the map P ×M P ′ 3 (y, y′) 7→ σΦ(y, y′) is (K ×K)-equivariant,
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hence it gives an element σΦ ∈ CK×K(P ×M P ′,K). Therefore, by definition, we
get the identity

Φ(y) = y′.σΦ(y, y′). (54)

Conversely, for an element σ ∈ CK×K(P×MP ′,K), it is easy to check that the right
hand side of (54) depends only on y and defines an id-covering bundle morphism
P → P ′. Our bijection S is Φ 7→ σΦ.

We prove now that, for any pair (A,A′) ∈ A(P ) × A(P ′), the conditions (i),
(ii) are equivalent.

(2) Let Φ ∈ Homid(P, P ′). Let λ : P ′ × K → P ′ be the right action of K
on P ′. For a pair (y′, k) ∈ P ′ × K denote by λy′ : K → P ′, λk : P ′ → P ′ the
corresponding maps obtained from λ by fixing an argument. Using (54) we obtain
for a pair (w,w′) ∈ T (P ×M P ′)

Φ∗y(w) = (λy′)∗σ
Φ
∗ (w,w′) + (λσΦ(y,y′))∗(w

′). (55)

Let H ⊂ TP×MP ′ be the (A,A′)-horizontal distribution. Recall that one has
H(y,y′) = Ay ×TxM A′y. Suppose that σΦ

∗ H = 0, let w ∈ Ay and let w′ be the
A′-horizontal lift of p∗(w). Using (55) we obtain

Φ∗y(w) = (λσΦ(y,y′))∗(w
′) ∈ A′y′.σΦ(y,y′) = A′Φ(y)

Therefore Φ∗y(Ay) = A′y′ . Since this holds for any (y, y′) ∈ P ×M P ′ we get

Φ∗(A′) = A, as claimed. Conversely, suppose Φ∗(A′) = A. Then for any (w,w′) ∈
H(y,y′) we have

(λy′)∗σ
Φ
∗ (w,w′) = −(λσΦ(y,y′))∗(w

′) + Φ∗y(w) ∈ A′Φ(y),

where the left hand side is vertical, and the right hand side is A′-horizontal. This
implies (λy′)∗σ

Φ
∗ (w,w′) = 0, hence σΦ

∗ (w,w′) = 0.

1.4. The stabilizer of a connection. Let π : P → M be a principal K-
bundle over M . A gauge transformation of P is a idM -covering bundle isomor-
phism f : P → P such that for all (y, k) ∈ P × K, f(yk) = f(y)k . The gauge
transformations of P form a group, called the gauge group of P , and is denoted by
G(P ).

Let Ad : K ×K → K be the action of K on itself defined by (k, k′) 7→ k−1k′k.
The space of all Ad-equivariant maps ϕ : P → K is defined by

CK(P,K) = {ϕ : P → K |ϕ(yk) = k−1ϕ(y)k ∀y ∈ P,∀k ∈ K} .
The space CK(P,K) has a group structure inherited from K and can be iden-

tified with G(P ) in a natural way. For any ϕ ∈ CK(P,K) the corresponding gauge
transformation is defined by fϕ(y) = yϕ(y). Conversely, if f ∈ G(P ), define
ϕf : P → K by the relation f(y) = yϕf (y). Also there exists a natural identifica-
tion between the space CK(P,K) and the space of smooth sections of the associated
bundle P ×Ad K →M .

The space of connections on P , denoted by A(P ), is an affine space modeled
on the vector space A1(adP ) ' A1

ad(P, k) [DK], [Te]. The gauge group G(P ) acts
on A(P ) by (f,A) 7→ f∗A. The next proposition is stated in [DK] (see [DK, Lemma
4.2.8]) but the proof is left to the reader as an “exercise". We give a proof below:
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Proposition 1.7. Suppose that M is connected. Let A ∈ A(P ) be a connection

on P , GA(P ) denote the stabilizer subgroup of A in gauge group G(P ) and HolAy0

be the holonomy group of P with respect to connection A at a fixed point y0 ∈ P .
The evaluation morphism ey0 : G(P ) → K given by f 7→ ϕf (y0) maps GA(P )

isomorphically onto the centralizer ZK(HolAy0
) of HolAy0

in K.

Proof. Put x0 := π(y0). Let PAy0
denote the holonomy bundle of A through

y0 ∈ Px0
[KN, p. 85]. This bundle is the submanifold of P consisting of all points

y ∈ P which can be joined to y0 by a smooth A-horizontal curve. Let γ : [0, 1]→ P
be a A-horizontal curve with initial point γ(0) = y0. Let f ∈ G. We claim that
f ∈ GA if and only if ϕf is constant on PAy0

. Indeed, if f ∈ GA then the curves f ◦γ
and Rϕf (y0) ◦ γ are both A-horizontal with the same initial point f(y0). Thus for
any t ∈ [0, 1] we have

γ(t)ϕf (γ(t)) = f(γ(t)) = Rϕf (y0)(γ(t)) = γ(t)ϕf (y0). (56)

Therefore ϕf (γ(t)) = ϕf (y0), so ϕf is constant on PAy0
.

Conversely, if ϕf is constant on PAy0
, it will be constant on any A-horizontal

curve γ with γ(0) = y0. Thus for any t ∈ [0, 1] we have ϕ(γ(t)) = ϕ(y0) and
thus (56) is satisfied. Therefore f ◦ γ is A-horizontal for any A-horizontal curve γ
with γ(0) = y0. Since A is invariant, it follows that f ◦ γ is A-horizontal for any
A-horizontal curve γ with γ(0) ∈ Px0

. Since M is connected, for any y ∈ P and
any v ∈ Ay there exists an A-horizontal curve γ : [0, 1] → P such that γ(0) ∈ Px0

and, γ(1) = y, γ̇(1) = v. Therefore the claim is proved.
We have to prove

(1) the restriction ey0 GA(P ) is injective,

(2) ey0
(GA(P )) = ZK(HolAy0

).

For the first claim, f ∈ GA(P ) such that ϕf (y0) = eK . Then ϕf ≡ eK on
PAy0

. Since ϕf is K-equivariant, it follows that ϕf ≡ eK on the whole P . For

the second claim, let z ∈ ZK(H). Define ϕz : PAy0
→ K by ϕ(y) = z. This map

is HolAy0
-equivariant. Thus ϕz : PAy0

→ K has a unique K-equivariant extension

ϕ : P → K. Let f ∈ G(P ) such that ϕf = ϕ. The restriction of ϕf on PAy0
is

constant, so f ∈ GA(P ).

2. Infinitesimally homogeneous Riemannian metrics. The theorem of
Singer

Let (M, g) be a Riemannian manifold endowed with a locally homogeneous
metric. This means that, for any pair (x, x′) ∈ M ×M there exists open neighbor-
hoods U 3 x, U ′ 3 x′ and an isometry f : U → U ′ such that f(x) = x′.

A natural question is: under which conditions on (M, g) can one prove that
any local isometry f : U → U ′ as above, with U , U ′ connected, can be uniquely
extended to a global isometry f̃ : M → M . The answer is given by the following
theorem of Ambrose-Singer [AS], [Si]:

Theorem 2.1. Any locally homogeneous, connected, simply connected, com-
plete Riemannian manifold is globally homogeneous.
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If (M, g) is a real analytic Riemannian manifold this result follows from a well-
know extension theorem for local isometric immersions [KN, Theorem 6.3]. The
result holds in full generality in the category of differentiable Riemannian mani-
folds, so real-analyticity is not necessary. The proof in the differentiable category is
much more difficult and requires new ideas. Since these techniques play an impor-
tant role in Chapter 2, we explain here, in an original way, the strategy of the proof.

An important ingredient in Ambrose Singer’s proof is the following classical
result [KN, Theorem 7.4, Theorem 7.8, Corollary 7.9].

Theorem 2.2. Let M and M ′ be a differentiable manifolds endowed with linear
connections ∇, ∇′. Assume: ∇T∇ = 0, ∇R∇ = 0, ∇′T∇′ = 0, ∇′R∇′ = 0.
Let F : Tx0

M → Tx′0M
′ be a linear isomorphism such that F (T∇x0

) = T∇
′

x′0
and

F (R∇x0
) = R∇

′

x′0
. Then there exists an affine isomorphism f : U → U ′ of an open

neighborhood U of x0 onto an open neighborhood U ′ of x′0 such that f(x0) = x′0 and
that f∗x0

= F .
If, moreover, M and M ′ are simply connected and (M,∇), (M ′,∇′) are com-

plete, then there exists a global affine isomorphism f : M →M ′ such that f(x0) =
x′0 and that f∗x0 = F .

In this theorem we used the notations

T∇ ∈ A0(L2
alt(TM , TM )) , R∇ ∈ A2(gl(TM ))

for the torsion, respectively the curvature tensor of∇. Note that this theorem holds
for arbitrary linear connections, not only for metric connections. In the special case
(M,∇) = (M ′,∇′) one obtains [KN, Corollary 7.9]:

Corollary 2.3. Let M be a connected differentiable manifold endowed with
a linear connection. Let ∇, T , R be the covariant derivative, torsion, respectively
the curvature of this connection. Suppose that ∇T = 0, ∇R = 0. For any pair
(x0, x

′
0) ∈ M ×M there exists open neighborhoods U 3 x0, U ′ 3 x′0 and an affine

isomorphism f : U → U ′ such that f(x0) = x′0.
If, moreover, M is simply connected and (M,∇) is complete, the group of affine

automorphisms of (M,∇) acts transitively on M .

This important result follows from Theorem 2.2 using a linear isomorphism
F : Tx0

M → Tx′0M obtained by parallel transport along a curve joining x0 to x′0.

This result is applied in the special case whenM is endowed with a Riemannian
metric g, and ∇ is a metric connection (but not necessarily the Levi-Civita connec-
tion of g). The conditions concerning the completeness of the connection ∇ is
equivalent to the completeness of g [TV, Proposition 1.5]:

Proposition 2.4. Let (M, g) be complete Riemannian manifold. Then each
metric connection ∇ on M is complete.

Combining these results we obtain the following important homogeneity crite-
rion for Riemannian manifolds:

Proposition 2.5. Let (M, g) be a connected, simply connected, complete Rie-
mannian manifold endowed with a linear metric connection ∇ such that ∇T∇ = 0,
∇R∇ = 0, then (M, g) is homogeneous.
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As explained above the homogeneity of M follows from the classical results
proved in [KN]. However the method of Ambrose is more effective: it gives an
explicit construction, in terms of a connection ∇ satisfying the hypothesis of 2.5, of
Lie group G acting transitively and effectively on (M, g) by isometries:

Let O(M) be the bundle of orthonormal frames of (M, g), and fix u ∈ O(M).
Let P∇u denote the holonomy bundle of ∇ through u. P∇u is the submanifold of
O(M) consisting of all points u′ ∈ O(M) which can be joined to u by a smooth
∇-horizontal curve. Ambrose and Singer showed that G = P∇u has a natural Lie
group structure, and it acts on M as an effective, transitive group of isometries
([AS], [TV, Theorem 1.18]).

The main difficulty in the proof of the Ambrose-Singer theorem is the construc-
tion of a metric connection∇ satisfying the hypothesis of the homogeneity criterion
2.5. For this construction one needs a condition on g which is apparently weaker
than (but a posteriori equivalent to) local homogeneity. In order to introduce this
condition we need some preparations:

For a Riemannian manifold (M, g), a point x0 ∈M and a non-negative integer
k ∈ N let g(x0; k) be the Lie subalgebra of so(Tx0

M) defined by

g(x0; k) := {F ∈ so(Tx0
M)| F ·DiRx0

= 0 for 0 ≤ i ≤ k} .

Since g(x0; k + 1) ⊂ g(x0; k) for any k ∈ N, there exists a first non-negative integer
kgx0

such that, g(x0; kgx0
) = g(x0; kgx0

+ 1). With this notation we can define

Definition 2.6. Let (M, g) be a Riemannian manifold, and let D, R denote
the covariant derivative associated with the Levi-Civita connection of g, and the
Riemannian curvature tensor. (M, g) is called infinitesimally homogeneous if for
any pair (x0, x

′
0) ∈M ×M , there exists a linear isometry F : Tx0M → Tx′0M such

that

F ∗(DiRx′0) = DiRx0
for 0 ≤ i ≤ kgx0

+ 1. (57)

The linear isometry F : Tx0
M → Tx′0M defines a Lie algebra isomorphism

so(Tx0
M)→ so(Tx′0M) which applies isomorphically g(x0; k) onto g(x′0; k) for each

0 ≤ k ≤ kgx0
+ 1. This implies

Remark 2.7. If (M, g) is infinitesimally homogeneous, then kgx0
is independent

of x0. We will denoted by kg the obtained constant.

Remark 2.8. If (M, g) is locally homogeneous, then it is also infinitesimally
homogeneous.

The difficult part of the proof of the Ambrose-Singer Theorem is the following
theorem of Singer [Si]:

Theorem 2.9. Let (M, g) be an infinitesimally homogeneous Riemannian man-
ifold. Then there exists a Rimannian connection ∇ on M such that ∇T∇ = 0,
∇R∇ = 0.

Proof. This construction of ∇ is obtained in two steps:

S1. Construct a Riemannian linear connection D with respect to which the tensors
DiR are parallel for 0 ≤ i ≤ kg + 1.
This connection will be obtained using a reduction of the structure group of O(M)
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from O(n) (where n := dim(M)) to a carefully chosen Lie subgroup H ⊂ O(n).
For x ∈ M we identify the fiber O(M)x with the manifold of linear isometries
u : Rn → Tx. A point u ∈ O(M)x defines an isomorphism

τu : L4(Tx,R)→ L4(Rn,R) .

Here we used the notation Lk(V,W ) for the space of k-multilinear maps

V × · · · × V →W .

The covariant derivative DiR is a section in the bundle (Λ1
M )⊗i⊗L4(TM ,R). There-

fore, for any i ∈ N we obtain a map

φi : O(M)→ Li(Rn, L4(Rn,R)) ' L4+i(Rn,R)

given by

φi(u)(ξ1, . . . , ξi) := τu
(
(DiR)(u(ξ1), . . . , u(ξi))

)
.

Now define the O(n)-equivariant map

Φ : O(M)→
kg+1⊕
i=0

Li(Rn, L4(Rn,R))

by

Φ(u) := (φi(u))0≤i≤kg+1 .

The main observation in this first step of the proof is: since (M, g) is infinitesimally
homogeneous with associated constant kg, the image Φ(O(M)) is an orbit with
respect to the natural O(n) action on the vector space

kg+1⊕
i=0

Li(Rn, L4(Rn,R)).

Fixing u0 ∈ O(M), denoting by H the stabiliser of Φ(u0) in O(n), identifying
Φ(O(M)) with the homogeneous space O(n)/H, we obtain (see [KN, Proposition
5.6]) a H-reduction

Q := Φ−1(Φ(u0)) ⊂ O(M)

of O(M). With this definition we see that the restriction Φ Q is constant. This
shows that, identifying (Λ1

M )⊗i ⊗ L4(TM ,R) with a vector bundle associated with
Q, the sections DiR (0 ≤ i ≤ kg + 1) are B-parallel, for any connection B on
Q. It suffices to define D to be the linear connection on TM associated with any
connection B on Q, and the first step is complete.

S2. Finding β ∈ A1(so(TM )) such that ∇ := D + β satisfies the conclusion of
Theorem 2.9.

In this step we use essentially the definition of kg. For any k ∈ N and x ∈ M
put

gx(k) := {b ∈ so(TxM)| b · (DiR)x = 0 for 0 ≤ i ≤ k} ,
where b 7→ b · stands for the infinitesimal action of the Lie algebra so(TxM) on the
tensor algebra of TxM . Since the sections DiR are D-parallel for 0 ≤ i ≤ kg + 1, it
follows that

g(k) :=
⋃
x∈M

gx(k)
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is a D-parallel subbundle of so(TM ) for any 0 ≤ k ≤ kg+1. Moreover, the definition
of kg gives the equality g(kg) = g(kg + 1). Put g := g(kg + 1) to save on notations,
and let g⊥ be the orthogonal complement of g with respect to the standard inner
product on so(TM ). Let b := D−D ∈ A1(so(TM )), and let

b = b′ + b′′

be the decomposition of b with respect to the orthogonal decomposition

Λ1 ⊗ so(TM ) = (Λ1 ⊗ g)⊕ (Λ1 ⊗ g⊥) . (58)

Put ∇ = D − b′ = D + b′′. Since D(DkR) = b′ · (DkR) = 0 for 0 ≤ k ≤ kg + 1 it
follows that one also has

∇(DkR) = 0 for 0 ≤ k ≤ kg + 1 , (59)

in particular the orthogonal decomposition

so(TM ) = g⊕ g⊥ (60)

is both D and ∇-parallel.
We use now the formula

0 = ∇(DkR) = (D + b′′)(DkR) = Dk+1R+ b′′ · (DkR) for 0 ≤ k ≤ kg .
Applying ∇ξ on both sides (for a tangent vector ξ ∈ TxM), one proves that ∇b′′ is
a section of

Λ1
M ⊗ Λ1

M ⊗ g(kg) = Λ1
M ⊗ Λ1

M ⊗ g(kg + 1) = Λ1
M ⊗ Λ1

M ⊗ g

(see section 2.1 for details and a generalization of this argument). But, since the
decomposition (60) is ∇-parallel, and b′′ ∈ Γ(Λ1 ⊗ g⊥) it follows that ∇b′′ is also
a section of Λ1

M ⊗ Λ1
M ⊗ g⊥. Therefore ∇b′′ = 0. This gives ∇T∇ = 0. Taking

k = 0 in (59) we also have ∇R = 0. Expressing R∇ in terms of R and b′′, and using
again ∇b′′ = 0, we obtain ∇R∇ = 0. Therefore, taking β := −b′, the connection
∇ := D + β satisfies the conclusion of Theorem 2.9.

Using now Corollary 2.3 and the homogeneity criterion 2.5 we obtain [Si, Main
Theorem, p. 692]:

Corollary 2.10. A Riemannian manifold (M, g) is infinitesimally homoge-
neous if and only if it is locally homogeneous. Any connected, simply connected,
complete infinitesimally homogeneous Riemannian manifold is homogeneous.



Bibliography

[AS] Ambrose, W., Singer, I.M.: On homogeneous Riemannian manifolds, Duke Math. J., 25,
647-669 (1958).

[Ba] Bazdar, A.: Locally homogeneous triples: Extension theorems for parallel sections and

parallel bundle isomorphisms. Mediterr. J. Math. (2017).
[BaTe] Bazdar, A., Teleman, A.: Moduli spaces of locally homogeneous triples, in preparation.

[Be] Berger, M.: On the diameter of some Riemannian manifolds. Technical report, University

of California Berkeley (1962).
[BiTe] Biswas, I., Teleman, A.: Invariant connections and invariant holomorphic bundles on

homogeneous manifolds, Cent. Eur. J. Math. 12(1), 1–13 (2014)

[DK] Donaldson, S., Kronheimer, P.: The Geometry of Four-Manifolds, Oxford University Press
(1990).

[Ra] Diaz-Ramos, J.C.: Proper isometric actions, arXiv:0811.0547 [math.DG] (2008).
[Fi] Filipkiewicz, R.O.: Four dimensional geometries, Ph.D. thesis, University of Warwick,

(1984).
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