Thèse soutenue

Réseaux de service web : construction, analyse et applications

FR  |  
EN
Auteur / Autrice : Hafida Naim
Direction : Mohamed QuafafouNicolas Durand
Type : Thèse de doctorat
Discipline(s) : Mathématiques et informatique
Date : Soutenance le 13/12/2017
Etablissement(s) : Aix-Marseille
Ecole(s) doctorale(s) : École doctorale Mathématiques et Informatique de Marseille (Marseille ; 1994-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire des sciences de l'information et des systèmes (Marseille ; La Garde, Var ; 2002-2011)
Jury : Président / Présidente : Djamal Benslimane
Examinateurs / Examinatrices : Daniela Grigori
Rapporteur / Rapporteuse : Samir Tata, Claude Godart

Résumé

FR  |  
EN

Cette thèse se place dans le cadre de services web en dépassant leur description pour considérer leur structuration en réseaux (réseaux d'interaction et réseaux de similitude). Nous proposons des méthodes basées sur les motifs, la modélisation probabiliste et l'analyse des concepts formels, pour améliorer la qualité des services découverts. Trois contributions sont alors proposées: découverte de services diversifiés, recommandation de services et cohérence des communautés de services détectées. Nous structurons d'abord les services sous forme de réseaux. Afin de diversifier les résultats de la découverte, nous proposons une méthode probabiliste qui se base à la fois sur la pertinence, la diversité et la densité des services. Dans le cas de requêtes complexes, nous exploitons le réseau d'interaction de services construit et la notion de diversité dans les graphes pour identifier les services web qui sont susceptibles d'être composables. Nous proposons également un système de recommandation hybride basé sur le contenu et le filtrage collaboratif. L'originalité de la méthode proposée vient de la combinaison des modèles thématiques et les motifs fréquents pour capturer la sémantique commune maximale d'un ensemble de services. Enfin, au lieu de ne traiter que des services individuels, nous considérons aussi un ensemble de services regroupés sous forme de communautés de services pour la recommandation. Nous proposons dans ce contexte, une méthode qui combine la sémantique et la topologie dans les réseaux afin d'évaluer la qualité et la cohérence sémantique des communautés détectées, et classer également les algorithmes de détection de communautés.