Fondements mathématiques de la maturation d’affinité des anticorps
Auteur / Autrice : | Irène Balelli |
Direction : | Hatem Zaag |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 30/11/2016 |
Etablissement(s) : | Sorbonne Paris Cité |
Ecole(s) doctorale(s) : | École doctorale Galilée (Villetaneuse, Seine-Saint-Denis) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Analyse, géométrie et applications (LAGA) (Villetaneuse, Seine-Saint-Denis) |
Jury : | Président / Présidente : Nadine Varin-Blank |
Examinateurs / Examinatrices : Hatem Zaag, Nadine Varin-Blank, Julien Berestycki, Thierry Mora, Jean-François Delmas, Vuk Milišić, Khashayar Pakdaman, Gilles Wainrib | |
Rapporteur / Rapporteuse : Julien Berestycki, Thierry Mora |
Résumé
Le système immunitaire adaptatif est capable de produire une réponse spécifique contre presque tous le pathogènes qui agressent notre organisme. Ceci est dû aux anticorps qui sont des protéines secrétées par les cellules B. Les molécules qui provoquent cette réaction sont appelées antigènes : pendant une réponse immunitaire, les cellules B sont soumises à un processus d’apprentissage afin d’améliorer leur capacité à reconnaitre un antigène donne. Ce processus est appelé maturation d’affinité des anticorps. Nous établissons un cadre mathématique très flexible dans lequel nous définissons et étudions des modelés évolutionnaires simplifies inspirés par la maturation d’affinité des anticorps. Nous identifions les éléments constitutifs fondamentaux de ce mécanisme d’évolution extrêmement rapide et efficace : mutation, division et sélection. En commençant par une analyse rigoureuse du mécanisme de mutation dans le Chapitre 2, nous procédons à l’enrichissement progressif du modelé en ajoutant et analysant le processus de division dans le Chapitre 3 ,puis des pressions sélectives dépendantes de l’affinité dans le Chapitre 4. Notre objectif n’est pas de construire un modèle mathématique très détaillé et exhaustif de la maturation d’affinité des anticorps, mais plutôt d’enquêter sur les interactions entre mutation, division et sélection dans un contexte théorique simplifie. On cherche à comprendre comment les différents paramètres biologiques influencent la fonctionnalité du système, ainsi qu’à estimer les temps caractéristiques de l’exploration de l’espace d’états des traits des cellules B. Au-delà des motivations biologiques de la modélisation de la maturation d’affinité des anticorps, l’analyse de ce processus d’apprentissage nous a amenée à concevoir un modèle mathématique qui peut également s’appliquer à d’autres systèmes d’évolution, mais aussi à l’étude de la propagation de rumeurs ou de virus. Notre travail théorique s’accompagne de nombreuses simulations numériques qui viennent soit l’illustrer soit montrer que certains résultats demeurent extensibles a des situations plus compliquées.