
Thèse
présentée pour obtenir le grade de

Docteur de l’Université Paris Diderot

§

Laboratoire de Probabilités et Modèles Aléatoires
École doctorale Mathématiques Paris Centre

Discipline : Mathématiques Appliquées

Using Poisson processes for
rare event simulation

Par : Clément Walter

Sous la direction de Josselin Garnier

Soutenue publiquement le 21 octobre 2016 devant un jury composé de :

Examinateur Stéphane Boucheron, Professeur, Université Paris Diderot

Examinateur Gilles Defaux, Ingénieur, CEA

Directeur Josselin Garnier, Professeur, École Polytechnique

Examinateur Arnaud Guyader, Professeur, Université Pierre et Marie Curie

Rapporteur François Le Gland, Directeur de Recherche, INRIA

Examinateur Tony Lelièvre, Professeur, École des Ponts ParisTech

Examinateur Éric Moulines, Professeur, École Polytechnique

Rapporteur Daniel Straub, Professeur, TU München

2

C’est chose étroite qu’un couteau et le fruit qu’il tranche,
on n’en rejoindra pas les parts

Paul Claudel – Le Partage de Midi

ii

Remerciements

C’est donc ici que tout commence et tout finit. Le moment de chercher et rendre compte
des causes et éléments qui ont contribué, directement ou non, à la création du manuscrit
qui suit. Avril 2013 - octobre 2016 : trois ans et demi autour des événements rares,
rétrospective d’une trajectoire aléatoire.

Lundi 8 avril 2013. Après une très pleine saison de ski et une semaine de retard sur la
rentrée officielle, le CEA et Gilles Defaux m’accueillent pour 4 mois avec option “thèse”
sur les conseils de Nicolas Petit, professeur aux Mines. Toujours présent pour répondre
à mes doutes sur mon orientation et mes activités extra-scientifiques, c’est donc un peu
grâce à lui que je suis arrivé ici, même s’il reconnaissait volontiers : “Les probabilités des
évènements rares sont un domaine scientifique pointu, d’intérêt majeur depuis longtemps
(même si je ne sais pas personnellement pourquoi). C’est un excellent sujet.” S’il lit cette
thèse, j’espère qu’il trouvera quelques réponses à cette question.

Le sujet du stage, mélanger les Subset Simulation avec les méthodes de krigeage, est
une idée de Gilles. Son sens pratique des algorithmes m’a donné de partir immédiatement
sur une piste intéressante. Les résultats obtenus à la fin des ces quatre mois ont été le réel
point de départ des premiers travaux de recherche en novembre 2013.

A ce moment là, après de grandes grandes vacances en Amérique, je commence
véritablement à travailler avec Josselin Garnier, mon directeur de thèse (merci Gilles et le
CEA pour la prime de stage, Josselin pour avoir accepté cette insensément longue pause).
C’est lui qui me pousse à étudier de manière théorique et précise les pistes proposées à la
fin du stage ; et pousse entre mes mains la pierre essentielle de tous mes travaux futurs,
l’article d’Arnaud Guyader et al. : “Simulation and estimation of extreme quantiles and
extreme probabilities”. J’ai eu l’occasion de le rencontrer par la suite et il m’a fait l’honneur
de participer à mon jury de thèse, Arnaud est sans aucune doute, mais peut-être sans en
être si conscient, un élément déterminant de ce doctorat. C’est comme s’il avait apporté,
ready-made, tous les outils théoriques dont j’avais besoin pour justifier mes bricolages
algorithmiques.

Ce premier cycle s’achève le 13 mai 2014 par la soumission d’un article et des vacances
au Canada. Au retour rien ne sera plus pareil, et pour la première fois j’éprouve le
sentiment de la vacuité de ces recherches ; tout lasse. Première période de vide, je remercie
l’équipe du CEA de me laisser papillonner sur différents thèmes et Guillaume Perrin de
m’accompagner en Italie étudier les sensibilités.

Je retiens la date du 24 juillet 2014 parmi un de ces rares jours où tout s’éclaire, où
l’on veut crier eurêka, où l’on court à son bureau à 19h pour essayer et écrire. Quatre
jours, quatre moments, quatre chapitres à cette thèse. Ceux qui étaient présent sur les

iii

pelouses des Invalides s’en souviennent peut-être. Le travail sur ce qui s’appelait en fait
le nested sampling prend une nouvelle tournure. Grâce au soutient technique précis et
puissant de Josselin et aux excellentes remarques d’Arnaud Guyader, il terminera plus
d’un an plus tard dans un article de Statistics and Computing.

A la rentrée, toujours radical et pressé, je décide de ne plus aller au CEA ou d’arrêter.
Grâce à la complaisance de Gilles, j’obtiens l’autorisation de m’installer trois jours par
semaine à l’université Paris Diderot. Nouvelle année nouveau départ. Parallèlement le
Komet Football Club est créé avec Josselin Decroix ; toute une équipe tous les lundi pour
taper la balle sur les différents parcs interdépartementaux de la petite couronne. Des
victoires, des montées, des résumés et des likes Facebook, on respire. Le 24 octobre je
termine également ma première chemise, le début d’une autre histoire.

La deuxième année devait être celle de mon départ pour l’étranger, elle sera celle de
la rupture tout court. Une année standard où les activités extra-thèses se développent
à mesure que les mois passent. Je pense toucher le fond en mai ; les travaux que je
mène n’intéressent pas directement le CEA, et indirectement personne. Julien Bect
m’invite néanmoins à venir présenter des résultats à Supélec et ceci marque le début
d’une collaboration qui aboutira aux résultats du chapitre 5. Fin juin, l’étude sur les
discontinuités prend sa forme finale à la suite d’une de ces journées éclair ; un papier
est envoyé avant de partir pour un mois et demi de vacances. Août est l’occasion de
retravailler sur le nested sampling d’après les retours des rapporteurs. Une fois de plus, la
confiance de Gilles me permet d’effectuer ce travail dans les meilleures conditions, depuis
la Bretagne. C’est à ce moment-là qu’Arnaud Drizard m’initie au cluster Amazon EC2 et
au calcul parallèle, un ultime virage pour la dernière année.

Les épreuves renvoyées, la rentrée arrive avec l’envie de tout sauf avancer cette thèse.
Challenger Deep m’accueille pour deux mois, avant que Calchemise ne devienne une
activité à temps plein. Noël passé, la science reprend sa place, retour des travaux avec
Julien Bect. Rapidement néanmoins, les considérations pratiques débordent sur le reste :
il faut faire tourner ces méthodes sur de vrais cas, sur de vrais supercalculateurs, ou ça n’a
pas de sens. Près de trois moi pour développer du calcul parallèle sur Airain et il est déjà
temps de commencer à rédiger le manuscrit. Ultime épreuve, ultime passion ; les travaux
sur le krigeage se finiront simultanément à la rédaction du chapitre. Le 10 juillet à 3h20
du matin, Professeur Garnier met fin à l’exercice. Trois jours plus tard je pars pour deux
mois ; merci à celles qui m’ont recueilli en complète déflation !

Lorsque ma peine s’arrête commence celle des rapporteurs. Je remercie chaleureusement
messieurs François Le Gland et Daniel Straub d’avoir accepté d’emporter cet ouvrage en
vacances, de le lire et de le commenter. Le 21 octobre, ils sont tous les deux présents
accompagnés de Messieurs Stéphane Boucheron, Arnaud Guyader, Tony Lelièvre, Eric
Moulines ainsi que mes encadrants Gilles Defaux et Josselin Garnier pour constituer le
jury de ma soutenance. Merci à eux d’avoir conclu avec pertinence et bienveillance cette
entreprise. Tout spécialement merci à Josselin pour avoir toujours répondu à mes questions

iv

sans jamais les devancer et à Gilles pour m’avoir toujours fait confiance et apporté un
soutien inconditionnel.

J’ai pu mentionner au fil des dates certaines personnes ; évidemment d’autres aussi sont
là tout le temps qui ne sont pas entrées dans cette énumération. Il y a bien sûr les membres
de l’équipe incertitude du CEA, Jean “le boss” Giorla qui a du accepter mes originalités
de procédures, Guillaume Perrin, arrivé quasiment en même temps que moi et qui m’a
initié à la FSGT, Claire Cannamela et le petit nouveau, Philippe Mellinger. J’éviterai
la longue liste de tous les stagiaires et doctorants du bâtiment B, mais je les remercie de
m’avoir accueilli quand je voulais bien moi faire une pause avec eux. Cette remarque vaut
également pour tous les camarades de P7. Je pense également à Bertrand Iooss qui est à
l’origine du projet mistral ; Nathalie Bergame et Valérie Juvé qui m’ont plus d’une fois
débloqué à Sophie Germain et Claire Boulier conduit à Brétigny. Et l’extra scientifique :
Philippe Masse, mon professeur en MP, pour m’avoir initié aux math ; Matthieu Rougé
pour ses encouragements ; tous mes camarades des Mines ou d’ailleurs, en particulier
Martin de Gourcuff ; Calchemise en général ; tous ceux qui ont un jour franchi le palier de
la rue des Mathurins, pour un soir ou plusieurs mois, dont Marc Lafont présent seul de
bout en bout ; vin chaud for ever ; Paris.

La conclusion appartient à tous ceux qui ont fait l’effort de venir le jour même à 9h30
pour passer deux heures à me voir parler sans rien comprendre (comme d’habitude), en
particulier ma famille au complet.

v

Contents

Contents vii

Context xi

I Introduction 1

1 Monte Carlo methods for rare events 3
1.1 Crude Monte Carlo method . 4

1.1.1 Theoretical definition . 4
1.1.2 Limitation . 6
1.1.3 Practical implementation . 6

1.2 Importance Sampling . 8
1.3 Splitting . 9

1.3.1 Ideal splitting . 10
1.3.2 Adaptive splitting . 12
1.3.3 Conditional sampling . 17

1.4 Nested sampling . 20
1.5 Efficiency of the estimators . 21

2 Rare event simulation and surrogate models 25
2.1 Usual surrogate models . 26

2.1.1 First/Second order reliability method 26
2.1.2 Support-Vector Machine . 28
2.1.3 Polynomial-Chaos expansion . 32
2.1.4 Kriging . 34

2.2 Design of Experiments . 41
2.2.1 First Design of Experiments . 41
2.2.2 Model-oriented designs . 44
2.2.3 Stepwise Uncertainty Reduction . 46

2.3 Metamodels and estimators . 49
2.3.1 Crude Monte Carlo estimator . 49
2.3.2 Importance sampling-based procedures 51
2.3.3 Subset Simulation . 53

vii

CONTENTS

II Contribution to rare event simulation 55

3 Point process for rare event simulation 57
3.1 Introduction . 57
3.2 The increasing random walk . 59
3.3 Probability estimator . 62

3.3.1 Minimal variance unbiased estimators 62
3.3.2 Efficiency of the estimator . 66
3.3.3 Confidence intervals . 67

3.4 Quantile estimator . 69
3.4.1 Description of the estimator . 69
3.4.2 Statistical analysis of the estimator 72

3.5 Discontinuous random variables . 75
3.5.1 The increasing random walk for discontinuous random variables . . 76
3.5.2 Probability estimators . 79

3.6 Numerical examples . 85
3.6.1 Discretised random path . 85
3.6.2 Discrete random variable . 88

3.7 Conclusion . 92

4 Nested sampling and rare event simulation 95
4.1 Introduction . 95
4.2 Ideal estimator . 97

4.2.1 Extreme event simulation . 97
4.2.2 Definition of the moment estimator 99
4.2.3 Comparison with classical Monte Carlo 102

4.3 Randomised unbiased estimator . 103
4.3.1 Definition . 103
4.3.2 Convergence rate . 107
4.3.3 Optimal randomisation . 109
4.3.4 Geometric randomisation . 111
4.3.5 Parallel implementation . 113

4.4 Application to heavy-tailed random variables 114
4.4.1 Exact resolution for a Pareto distribution 115
4.4.2 Comparison of the estimators . 120

4.5 Examples . 122
4.5.1 Practical implementation . 122
4.5.2 Variance increase . 124
4.5.3 Adaptive stopping criteria . 125
4.5.4 Nested sampling with fixed computational budget 126

4.6 Conclusion . 128

viii

CONTENTS

5 Rare event simulation with random processes 131
5.1 Rare event simulation . 132

5.1.1 Augmented problem . 132
5.1.2 Link with other metamodel based algorithms 133
5.1.3 Uncertainty reduction . 135
5.1.4 Integrated SUR criteria . 138

5.2 Algorithms . 140
5.2.1 SUR criteria estimation . 141
5.2.2 Integrated SUR criteria estimation 142
5.2.3 Bayesian Moving Particles . 144

5.3 Numerical results . 146
5.3.1 SUR criteria . 147
5.3.2 Statistical error . 151
5.3.3 Industrial problem . 154

5.4 Conclusion . 160

Conclusion and perspectives 163

III Appendix 167

A Parallel computation of the estimators 169
A.1 Introduction . 169
A.2 Parallel algorithms . 170

A.2.1 Sampling conditional distributions 170
A.2.2 Batch simulation of random walks 173
A.2.3 Fixed threshold . 174
A.2.4 Fixed number of terms . 176
A.2.5 Last Particle Algorithm . 177

A.3 Wall-clock time . 178
A.3.1 Fixed threshold algorithm . 178
A.3.2 Fixed number of terms algorithm 182

A.4 Numerical benchmark of the parallelisation 184
A.4.1 Presentation of the examples . 185
A.4.2 Estimation of failure probability . 186
A.4.3 Estimation of quantile . 188

A.5 Conclusion on parallel implementation . 190

Bibliography 191

ix

CONTENTS

x

Context

This thesis deals with the simulation and the analysis of rare events. By rare events,
we mean events which do not appear often but whose realisation is important enough
to justify their study. Such events represent different kinds of risk: situations engaging
human beings (aviation or rail safety, civil engineering), environmental issues (failure of a
nuclear plant, dam robustness), financial risks (probability of ruin of an insurer); and some
other applications like telecommunication networks (loss of data at a saturated node) or
molecular dynamics (transition from one metastable state to another).

When these situations are modelled with numerical codes, the rare event is often
expressed as a level that a given real-valued output of the code should not overpass. For
instance the design of a reliable mechanical system may require that its maximum strain
should not exceed a given value, or that the internal pressure of an body not become
greater than a security threshold. In a financial setting, this would be that the total
insurance claims stay lower than the available funds. For network reliability, failure means
that the total required memory for a given node becomes greater than its physical capacity
because of the arriving of new parcels.

Throughout manuscript, the numerical code will be denoted by g a function taking
some input parameters x in a given set X and returning a real value y ∈ R. In the more
general setting, X is finite- or infinite dimensional: if x is a set of some parameters of the
code (for instance a stiffness coefficient, the Young’s modulus, ...), X ⊂ Rd for some d ≥ 1.
On the other hand x can be a path and thus x = (xt)t and X ⊂ (Rd)R is a space of time
dependent trajectories in Rd. Formally, the so-called failure domain F writes

F = {x ∈ X | g(x) > q}

for a given q ∈ R.
The computer code may be a coupling of several codes modelling different physical

phenomena (hydrodynamic, thermodynamic, mechanic, ...) and has no analytical expres-
sion: the underlying physical phenomena have no analytical solutions. This is often called
a black-box model because for any x in X it is possible to evaluate y = g(x), but no other
knowledge of “what happens” is available.

While the numerical code g is deterministic, the uncertainty on the inputs (exact
values of physical parameters for instance, solution of a stochastic differential equation, ...)
leads to a probabilistic approach to the problem. For a given input x ∈ X, the response
safety/failure, i.e. x /∈ F or x ∈ F , is deterministic. On a given underlying probability
space (Ω,F ,P), one can instead consider the random variable X with known distribution
µX modelling the uncertainty on the parameters. The firm response safety/failure becomes

xi

CONTENTS

a probability that X be in F :

P [X ∈ F] = P [g(X) > q] .

Since the system is supposed to be designed to operate in safe conditions (in some sense
above mentioned), this probability is expected to be very low. Yet one wants to be able
to estimate it to eventually guarantee that the system is safe with great confidence. The
level of required confidence in our applications gives a probability of failure typically lower
than 10−6, or one over one million of trials.

Furthermore these numerical codes are often very time-consuming and can take several
hours to several days to run. Hence very few trials will be possible to estimate the sought
probability. In this context, the well-known Monte Carlo method, which basically consists
in repeating independent trials and counting the number of failures found is not an option
and advanced methods have to be used. To fix the idea, in our industrial setting, the
question is somehow to insure with few hundred samples that a system is unsafe with a
probability lower than 10−6.

Note that the extreme value theory is not well suited for this class of problems.
Essentially it makes use of available data and is able to estimate a probability that a rare
event according to these data can arise. In our context we can generate the data and the
question is rather “what data should be simulated to give the most precise estimation
with the less samples?”.

We introduce the general concepts and methods used to address this issue in Part I.
The first chapter is inspired by the book of Rubino et al. [2009]; the reader is referred
to it and references therein for more details about Monte Carlo methods for rare events.
General introductions to Monte Carlo methods can also be found in the books by Robert
and Casella [2004] or Rubinstein and Kroese [2011]. In Chapter 1 we present the more
usual Monte Carlo methods. We start by presenting the original Monte Carlo method
in Section 1.1, now referred to as the crude Monte Carlo method, based on the idea of
repeating independent and identically distributed (iid.) trials [Metropolis and Ulam, 1949].
Then in Section 1.2 we present the Importance Sampling strategy, which consists in using
another distribution for X making the failure event less rare. In Section 1.3 we come up
with the Splitting method. With origins dating back to [Kahn and Harris, 1951] in the
dynamical setting X ⊂ (Rd)R and revisited in the static setting by Au and Beck [2001], it
aims at splitting the rare event into a sequence of less rare events such that the failure
domain is progressively reached with conditional simulations. Section 1.4 gives a brief
description of the main concept and limitations of the nested sampling method [Skilling,
2006]. This method has been developed in a Bayesian framework for evidence estimation
and we will show how it is linked with rare event simulation tools in Chapter 4. Finally
we give in Section 1.5 the usual criteria used for comparing rare event estimators.

In Chapter 2 we address the issue of using surrogate models for extreme event simulation.
Indeed, the above mentioned industrial setting (computational time of g) does not allow

xii

CONTENTS

for the use of the advanced statistics described in Chapter 1 because they are still too
time consuming. In this context we present in Section 2.1 the classes of metamodels
mostly used in the rare event setting, following [Sudret, 2012]. The issue of approximating
a computer code from some of its input-output couples is rather general and falls into
the field of Machine learning [DasGupta, 2011]. When the samples are generated by the
user/algorithm itself, one speaks of Computer experiments. A general introduction to
these techniques can be found in the books by Sacks et al. [1989], Santner et al. [2003],
Fang et al. [2005] or Forrester et al. [2008]. Specific to the Computer experiments setting
is the creation of the so-called Design of Experiments (DoE), i.e. the question of where to
call the code g. We present in Section 2.2 the different strategies used in the rare event
case. Finally, Section 2.3 summarises the different possible ways to use the metamodel to
produce an estimator of the sought probability.

Parallel computers have led to a paradigm shift for building algorithms. While the
power of one given CPU (Central Processing Unit) does not increase much any more,
computer clusters have become the standard for High Performance Computing (HPC).
The main concept is that instead of having one single core (CPU) available, one can use
simultaneously several (hundreds of) computers. For instance, the supercomputer Airain
used for the numerical applications of this thesis allows us to run tasks on more than 2000
cores at 2.7 Ghz each.

In order to use these computational facilities, new algorithms have to be designed to be
used in parallel. This means that they have to enable parallel computing, in other words
that their different operations should be made in parallel. These considerations led us to
define the point process framework for rare event simulation presented in Chapter 3. In
Section 3.2 we define the main theoretical tool used throughout this thesis, it is a Poisson
process associated with any continuous real-valued random variable. Using this Poisson
process we are able to derive parallel probability (Section 3.3) and quantile (Section 3.4)
estimators. Especially we show that the optimal Multilevel Splitting estimator which is
totally sequential is indeed a particular implementation of this new parallel estimator. We
further relax the continuity hypothesis of the cdf in Section 3.5 and are able to provide
the distributions of the counting random variables of the point process (not Poisson any
more). We also provide corrected probability estimators. Especially one of them has the
same distribution as in the continuous case. Numerical examples of Section 3.6 illustrate
the efficiency of the estimators as well as the impact of discontinuities.

The point process framework defined in Chapter 3 not only produces an estimator of
the probability P [g(X) > q] but of the whole cumulative distribution function (cdf) of
g(X) over (−∞, q]. This property lets us define an estimator for the (conditional) mean
of any real-valued random variable of the form Y = g(X) which does not require the
finiteness of the second order moment to have a finite variance (Section 4.2). Indeed in
some applications one can be interested in estimating conditional moments of the form
E [Y | Y > q], for instance the Mean Excess Loss E [Y − q | Y > q] in finance (also called

xiii

http://www-ccrt.cea.fr/fr/moyen_de_calcul/airain.htm

CONTENTS

the Mean Residual Life in insurance). This estimator is indeed related to the nested
sampling method and brings a new theoretical support for this algorithm. Furthermore
we propose optimal weights removing its bias and minimising its variance. In Section 4.3
we use recent results on randomised estimators [McLeish, 2011, Rhee and Glynn, 2015] to
address the issue of nested sampling termination. Especially we show that with a specific
randomising procedure given in Section 4.3.1, the nested sampling method can remain
unbiased with an almost surely finite number of terms. Furthermore this new estimator
only doubles the variance of the ideal one with an infinite number of terms. In Section 4.4
we thoroughly study the special case where Y = g(X) is heavy-tailed. Finally we discuss
the parallel implementation and present numerical results in Section 4.5.

All these methods still require an important number of simulations and are not usable
in some contexts such as the industrial one addressed here. In Chapter 5 we apply the
point process framework to metamodel-based algorithms. We focus on kriging [Krige, 1951,
Matheron, 1963, 1969, Wackernagel, 2013, Chiles and Delfiner, 2009] and show that all the
results derived with the deterministic code g remain valid using instead a random process
ξ with known distribution. We especially focus on Gaussian Process regression [Rasmussen
and Williams, 2006] and are able in this context to use the Poisson process framework
to monitor and drive efficiently the learning of the model with an easy computation of
the Stepwise Uncertainty Reduction (SUR) strategy [Bect et al., 2012]. We also suggest
new SUR criteria well suited for extreme events simulation. In Section 5.2 we develop the
general framework of an algorithm combining Poisson processes for rare event simulations
and metamodeling. Finally we apply this new algorithm in Section 5.3 to academic test
cases as well as to an industrial problem from CEA: the assessment of the reliability of a
containment vessel under dynamical loading. Finally, Appendix A gathers all the technical
results on parallel implementation and a study of the impact of parallel computing on the
properties of the estimators.

xiv

Part I

Introduction

1

Chapter 1

Monte Carlo methods for rare events

Throughout this thesis, we consider g : x ∈ X 7→ y ∈ R a deterministic function standing
for the computer code. x ∈ X is a finite- or infinite dimensional vector: x is either a set of
parameters of the computer code g and thus X ⊂ Rd for some d ≥ 1 or a time-dependent
trajectory x = (xt)t and X ⊂ (Rd)R. We also consider the so-called failure domain
F = {x ∈ X | g(x) > q} for some q ∈ R. The possible variations of the model parameters
are represented by a probability distribution over X. In the sequel we then consider random
inputs X defined on an underlying probability space (Ω,F ,P) with induced measure µX

over X. g is assumed to be measurable and Y = g(X) is hence a real-valued random
variable with distribution µY . While the law µX is always supposed to be known, the
random variable Y is only accessible through the computer code g and is then always
unknown. Formally, the problem of estimating the probability of failure p of the system
modelled by g reduces to measuring the set F :

p = µX(F) = P [g(X) > q] =
∫

X
1g(x)>qdµX(x) (1.1)

with 1cond the indicator function returning 1 if the condition is verified and 0 otherwise.
This integration problem cannot be handled with usual quadrature rules because of

the dimension of X and the low value of p. A usual tool to estimate Eq. (1.1) is the crude
Monte Carlo method and we introduce it in Section 1.1. We discuss its statistical properties
and a possible implementation is given as well as an illustration on a toy example.

However this method is not well suited when both the probability is low and the
computer code expensive to evaluate. In this scope we present in section 1.2 the Importance
Sampling method which aims at building an other random variable Ỹ with the same
expectation as 1Y >q but a lower variance. While this method can be very efficient it
requires also some knowledge on the computer code. This cannot be verified here and in
the worst case, this can even turn this algorithm into a poorer method than the crude
Monte Carlo. In our setting it is not applicable and we come up with the Splitting method
in Section 1.3.

This method goes back to Kahn and Harris [1951] and has been widely used and
studied since then. Amongst other approaches we choose here to present it from the
computational budget point of view. Roughly speaking it means that we focus on the
precision of an estimator for a given fixed number of generated samples. This makes it
perhaps a little bit different to what is seen elsewhere, but in the end we come up with

3

Part I, Chapter 1 – Monte Carlo methods for rare events

the more up-to-date references and results for these algorithms. The reader interested in
different approaches (Fixed Effort, Fixed Splitting, Fixed Success for instance) is referred
to [Diaconis and Holmes, 1995, Glasserman et al., 1996, 1999, Garvels, 2000, Amrein and
Künsch, 2011, Rubinstein et al., 2012] and references therein. Also somehow related to
Splitting but specific to the dynamic case, the RESTART method [Villén-Altamirano and
Villén-Altamirano, 1991] will not be addressed here.

The simulation methods presented before are designed for the estimation of extreme
probability. Yet there is a more general way to use them, precisely to estimate the
expectation of any real-valued random variable of the form Y = g(X). Widely used in
Bayesian analysis, the nested sampling method [Skilling, 2006] indeed implements a specific
case of the splitting method described in Section 1.3 and is presented in Section 1.4.

In Section 1.5 we present the usual notions used in rare event simulation to com-
pare algorithms and comment practical implementation with a special focus on parallel
computing.

Throughout the manuscript, a given estimator of p will be denoted by p̂, its standard
deviation will be σ and its coefficient of variation δ = σ/E [p̂]. When it is unbiased, δ is
also the relative Root Mean Squared Error (rRMSE) of the estimator.

1.1 Crude Monte Carlo method

The crude Monte Carlo method is a general tool to estimate integrals. It writes the sought
quantity as the expectation of a given random variable and only requires to be able to
generate such random variables. In this framework, Eq. (1.1) becomes:

p = P [g(X) > q] = E
[
1g(X)>q

]

and the random variable of interest is simply the indicator function of the model being
actually defective or not, i.e. a Bernoulli random variable with probability of success p
the sought value. From a practical point of view it can be generated by first sampling a
random X according to µX and then running the code g onto X.

1.1.1 Theoretical definition

Let us now consider N ≥ 1 independent and identically distributed (iid.) samples
(Xi)Ni=1 ∼ µX and the following statistic:

p̂MC = 1
N

N∑

i=1
1g(Xi)>q. (1.2)

4

1.1. Crude Monte Carlo method

p̂MC is the crude Monte Carlo estimator of p. It is unbiased:

E [p̂MC] = 1
N

N∑

i=1
E
[
1g(Xi)>q

]
= p,

and since the (Xi)i are independent, one has the following expression for its variance:

var [p̂MC] = 1
N2

N∑

i=1
var

[
1g(Xi)>q

]
= p(1− p)

N
. (1.3)

Hence the standard deviation σMC =
√

var [p̂MC] of the crude Monte Carlo estimator
decreases as 1/

√
N and so achieves a squared-root convergence rate. Furthermore, this

estimator is supported by two main theorems, it is the Strong Law of Large Numbers:

P
[

lim
N→∞

p̂MC = p
]

= 1

and the Central Limit Theorem:
√
N

p̂MC − p√
p(1− p)

L−−−→
N→∞

N (0, 1).

In other words the Strong Law of Large Numbers insures that the more samples used for
p̂MC, the more probable it is that the statistic be equal the sought probability p, while the
Central Limit Theorem gives the limit distribution of the estimator, which can be useful
for building confidence intervals. Indeed, for N large enough, it is often assumed that:

p̂MC
L∼ N

(
p, σ2

MC

)
. (1.4)

Now, letting α be a given probability (often α = 0.05 or α = 0.01) one can build
α−confidence intervals for p, i.e. random intervals Iα based on p̂MC such that P [p ∈ Iα] ≥
α. From the approximate law of p̂MC, one has:

P
[
−Z(α) < p̂MC − p

σMC
< Z(α)

]
= P [p̂MC − σMCZ(α) < p < p̂MC + σMCZ(α)] = 1− α

with Z1−α/2 the quantile of order 1− α/2 of a standard Gaussian random variable. Usual
values are Z0.975 = 1.96 and Z0.995 = 2.58. Since σMC is unknown, it is also estimated
with σ̂MC =

√
p̂MC(1− p̂MC)/(N − 1). This estimator almost surely converges toward σMC.

The confidence interval eventually writes [Rubino et al., 2009]:

Iα =

p̂MC −

√
p̂MC(1− p̂MC)

N − 1 Z1−α/2, p̂MC +
√
p̂MC(1− p̂MC)

N − 1 Z1−α/2


 .

5

Part I, Chapter 1 – Monte Carlo methods for rare events

1.1.2 Limitation
As N goes to infinity the standard deviation σMC goes to zero and the interval becomes
narrower: its width is 2σMCZ(α) ∝ 1/

√
N . However this width is to be compared with p

to see how far the estimator can depart from the sought value. More precisely one has:

δ2
MC = σ2

MC
p2 = p(1− p)

Np2 = 1− p
Np

. (1.5)

When p� 1, Eq. (1.5) gives:
N = 1− p

pδ2
MC
≈ 1
pδ2

MC
.

This means that the required number of samples N to achieve a given target precision δMC

on the Monte Carlo estimator is directly inversely proportional to the sought probability
times the squared precision. A relatively rough precision of 10% hence gives N = 102p−1.
In the applications considered further in thesis this is clearly not affordable; as a matter
of comparison with a computer code running in 5 minutes on a cluster and a failure
probability of 10−6, this would make ≈ 951 years to compute.

To circumvent this limitation, low variance estimators have been proposed and will be
further introduced in Sections 1.2 and 1.3.

1.1.3 Practical implementation
Despite this relatively slow convergence, the crude Monte Carlo estimator can be efficiently
used when either the probability is not so small or the code is much faster to run.
Furthermore it is also the base tool of the advanced estimators introduced further in
Section 1.2 and 1.3 and serves as a reference in academic test cases when no analytical
solution is available.

We then present in Algorithm 1 a sequential basic approach to implement a Monte
Carlo estimator.

Algorithm 1 A sequential algorithm for crude Monte Carlo estimator
Require: NMC a total number of samples or δMC a given coefficient of variation
Require: a sampler of µX

N = 0; δ =∞; p̂MC = 0
while N < NMC or δ > δMC do

Sample X ∼ µX ; N ← N + 1
p̂MC = p̂MC + 1g(X)>q

δ =
√

(N − p̂MC)/((N − 1)p̂MC) . N = 1 or p̂MC = 0 gives δ =∞
end while
p̂MC = p̂MC/N

6

1.1. Crude Monte Carlo method

Remark 1.1. In Algorithm 1, the variance of p̂MC is estimated with p̂MC(1− p̂MC)/(N−1)
instead of p̂MC(1− p̂MC)/N . This classical correction applied to get an unbiased estimator
of the variance is sometimes omitted because N is supposed to be large. Eventually the
estimator of the coefficient of variation does not provide any guarantee. Generally speaking,
the estimation of the variance is even more sensitive to the rare event than the probability
itself. Further details on this topic can be found in [Glynn and Whitt, 1992, Rubino et al.,
2009].

Figure 1.1 below shows an example of the use of the crude Monte Carlo method to
estimate p = P [g(X) < q] with:

g : x ∈ R2 7→ min





3 + (x1 − x2)2

10 − |x1 + x2|√
2

−|x1 − x2|+ 7/
√

2
(1.6)

[originally defined by Waarts, 2000], X ∼ N (0, I) a standard Gaussian vector (I is the
2× 2 identity matrix) and q = 0.

-5

0

5

-5 0 5
x1

x
2

(a) N = 100

-5

0

5

-5 0 5
x1

x
2

(b) N = 104

Figure 1.1: Example of a crude Monte Carlo estimation on the standard Gaussian input
space with different sample sizes N with a limit-state function defined in Eq. (1.6). The
dots are the N iid. samples (Xi)Ni=1 ∼ µX : blue dots are failing samples while red ones
are in the safety domain. The boundary, i.e. the level set {x ∈ R2 | g(x) = 0} (unknown
in real settings) is added for visual purpose.

The corresponding estimated probabilities in Figure 1.1 are p̂MC(100) = 0/100 = 0 and
p̂MC(104) = 24/104 = 2.4× 10−3 with estimated variances 0 and 2.39× 10−7 respectively
(see Table 1.1) . The first estimator with only 100 samples is clearly not able to recover
the target probability while with an order of magnitude of 10−3 the estimator p̂MC(104)
gives a precision of order 10%.

7

Part I, Chapter 1 – Monte Carlo methods for rare events

N p̂MC δ̂MC

102 0 ∞
104 2.4× 10−3 0.204124

Table 1.1: Estimation of a moderately low probability with the crude Monte Carlo method.

1.2 Importance Sampling

The limitation seen in the crude Monte Carlo estimator comes from the fact that the
standard deviation of a Bernoulli random variable with parameter p becomes much larger
than its expectation when the parameter p is small. In this context, the idea behind
Importance Sampling is to consider an other random variable with the same mean but a
lower variance. Reader is referred to [Glynn and Iglehart, 1989, Juneja and Shahabuddin,
2006] and references therein for more information about Importance Sampling.

Let Y be a real-valued random variable with distribution µY and finite expectation
E [Y] <∞; and Ỹ be a real-valued random variable with distribution µỸ such that µY is
absolutely continuous with respect to µỸ :

∀B ∈ B(R), µỸ (B) = 0⇒ µY (B) = 0.

The Radon-Nikodym theorem states that µY has a derivative L against µỸ , such that:

∀B ∈ B(R), µY (B) =
∫

B
LdµỸ .

If one assumes that both µY and µỸ have a density with respect to the Lebesgue measure,
f and f̃ respectively, then L = f/f̃ and so it is often called the likelihood ratio of µY with
respect to µỸ . Finally, the problem of estimating the expectation of Y can be rewritten:

E [Y] =
∫

R
ydµY (y) =

∫

R
yL(y)dµỸ (y) = E

[
Ỹ L(Ỹ)

]
.

Hence it is possible to estimate E [Y] with a Monte Carlo estimator and samples generated
according to µỸ given that the generated samples are multiplied by the likelihood ratio.
The question is now to find the optimal distribution µỸ – i.e. the distribution which will
minimize the variance of the Monte Carlo estimator based on Ỹ – such that the domination
condition remains true. In this context, the Cauchy-Schwarz inequality stands:

E
[(
Ỹ L(Ỹ)

)2
]
≥ E

[
|Ỹ L(Ỹ)|

]2

with equality iff. 1 ∝ |Ỹ L(Ỹ)|. This equality is solved using the fact that a probability

8

1.3. Splitting

measure sums up to 1 and one finally finds that the optimal distribution is:

∀B ∈ B(R), µỸ (B) =
∫

B

|y|
∫ |y|dµY (y)dµY (y).

Then the optimal distribution strongly depends on the problem at stake and if Y ≥ 0 the
optimal Importance Sampling estimator has a null variance. More precisely in our setting,
y = 1g(x)>q ∈ {0, 1} and one finds:

∀y ∈ R, dµỸ (y) = y

p
dµY (y).

In other words, the optimal importance distribution only samples successes of the Bernoulli
random variable. One can write this in terms of distributions over X and the optimal
importance distribution µX̃ eventually writes:

∀x ∈ X, dµX̃(x) = 1g(x)>q

p
dµX(x).

While not of great practical use, it lets define some adaptive strategies to approximate it,
for example by selecting an importance distribution amongst a family of well-chosen ones
minimizing a given distance to the optimal distribution. The well-known cross-entropy
method is one of those and the interested reader is referred to [Rubinstein, 1999, Rubino
et al., 2009, Rubinstein, 2009a] for more information.

Indeed in our setting, no assumption has to be made on the computer code. In this
context it may be very difficult to find an appropriate importance distribution and a bad
choice may lead to an estimator with an even greater variance. Even more difficult while
impossible is to insure that the absolute continuity assumption is verified. For all these
reasons this estimator will not be considered as an option later in this thesis.

1.3 Splitting

Splitting, originally called multilevel splitting [Kahn and Harris, 1951] in a dynamic case
(X is a trajectory) and rediscovered in the static case by Au and Beck [2001] under the
name Subset Simulation is based on the idea that the rare event should be split into several
events such that going from one to another such events is less rare.

Remark 1.2. In the sequel we will use indifferently the terms splitting and multilevel
splitting while Subset Simulation refers to a specific implementation developed in Section
1.3.2.

More precisely, Splitting makes use of a finite sequence of nested subsets (Fi)mi=0 such
that F0 = X and Fm = F the original failure domain. Then using the Bayes’ rule it writes

9

Part I, Chapter 1 – Monte Carlo methods for rare events

the sought probability as a product of conditional ones:

P [X ∈ F] =
m∏

i=1
P [X ∈ Fi | X ∈ Fi−1] =

m∏

i=1
pi (1.7)

with ∀i ∈ J1,mK, pi = P [X ∈ Fi | X ∈ Fi−1].

1.3.1 Ideal splitting

From Eq. (1.7) the goal is then to estimate each conditional probability independently
using crude Monte Carlo estimation. Let us consider that each pi is estimated with a
number of samples Ni. Denote by p̂i the corresponding estimators, one has:

∀i ∈ J1,mK, E [p̂i] = pi and var [p̂i] = pi(1− pi)
Ni

.

Then, the multilevel splitting estimator p̂MS is defined as follows:

p̂MS =
m∏

i=1
p̂i. (1.8)

Since the p̂i are independent, one can derive its mean and coefficient of variation:

E [p̂MS] = E
[
m∏

i=1
p̂i

]
=

m∏

i=1
E [p̂i] =

m∏

i=1
pi = p

and:

δ2
MS =

m∏
i=1

E
[
p̂i

2
]
− p2

p2 =
m∏

i=1

(
var [p̂i] + p2

i

p2
i

)
− 1 =

m∏

i=1
(δ2
i + 1)− 1.

For a given number of subsets m and a total number of samples N one can look for the
parametrisation (choice of the subsets and sample size for the probability estimations)
minimising the squared coefficient of variation:

argmin
pi∈(0,1], i∈J1,mK
Ni≥1, i∈J1,mK

m∏

i=1
(δ2
i + 1)− 1 s.t.

m∏

i=1
pi = p;

m∑

i=1
Ni = N. (1.9)

Here as in the crude Monte Carlo method the parameter N is supposed to be fixed and
represents somehow the total computational cost one can afford. This point will be further
developed in Section 1.5. Let λp and λN be the Lagrange multipliers for the constrained
optimisation problem (1.9). In addition to the two constrained equalities, the system
eventually reduces to m pairs of equations:





∆i = Nipipλp

∆i(1− pi) = N2
i piλN

10

1.3. Splitting

for all i ∈ J1,mK, with ∆i = 2(δ2
MS + 1)δi/(δ2

i + 1). Hence the couples (pi, Ni)mi=1 satisfy
all the same equations and are equal to some (p0, N0). Finally, using the constraints one
finds: 




m∏
i=1

pi = p ⇒ ∀i ∈ J1,mK, pi = p0 = p
1
m

m∑
i=1

Ni = N ⇒ ∀i ∈ J1,mK, mNi = mN0 = N
. (1.10)

Note that this theoretical optimisation is done on the augmented domain ∀i ∈ J1,mK, Ni ∈
R∗+. If the total budget N cannot be split into m equal parts, solution (1.10) is not feasible.
However this result means that all the conditional probabilities have to be estimated with
the same precision, i.e. with coefficient of variations δi of the same order of magnitude δ0.

δ2
MS =

m∑

i=1
δ2
i + o(δ2

0),

which means that for any Ni ≤ Nj, (i, j) ∈ J1,mK, one should have pi ≥ pj such that
δi = δj. In any cases, assuming that this solution is feasible leads to the following result:

δ2
MS = (δ2

0 + 1)m − 1 (1.11)

with δ2
0 = (p−1/m − 1)m/N . One can now wonder what is the best way to split the failure

domain for a given number of samples N , i.e. if there is an optimal number m ≥ 1 of
subsets for a given N . If one looks for m ∈ R+, one has:

∂δ2
MS

∂m
= log

(
δ2

0 + 1
)

(δ2
0 + 1)m +m(δ2

0 + 1)m−1 ∂δ
2
0

∂m
. (1.12)

Eq. (1.12) is intractable analytically. However, if one assumes that N � 1, it simplifies to:

0 = δ2
0 +m

∂δ2
0

∂m

0 = (p−1/m − 1)m+m(p−1/m − 1 + log p
m

p−1/m)

0 = 2(1− p0) + log p0.

This latter equation has two solutions: either p0 = 1 which is not possible, or p∗0 ≈
0.2032. Since the function p0 ∈ (0, 1) 7→ 2(1− p0) + log p0 is increasing until p0 = 0.5, it is
negative before 0.2 and positive afterwards. Then this solution is a minimum. This result
is consistent with the approximation used: with this latter value δ2

0 = − log p/(2p∗0N).
In general settings, p . 10−5 and N ≥ 1000, which gives δ2

0 . 10−2. Eventually we can
conclude that the optimal splitting method with fixed total number of samples N is the

11

Part I, Chapter 1 – Monte Carlo methods for rare events

following [see Rubino et al., 2009, Section 3.3.2]:




pi = p∗0 ≈ 0.2032 ∀i ∈ J1,mK

m = log p
log p∗0

≈ −0.63 log p

Ni = N

m
= N log p∗0

log p ≈ 1.59 N

− log p ∀i ∈ J1,mK

δ2
i = δ2

0 = (p∗0)−1 − 1
N

log p
log p∗0

≈ 2.46− log p
N

∀i ∈ J1,mK

δ2
MS = (δ2

0 + 1)m − 1 = (log p)2

N

1− p∗0
p∗0(log p∗0)2 + o

(1
N

)

≈ 1.54(log p)2

N
+ o

(1
N

)

(1.13)

This optimality result has been found neglecting the fact that N and m are integers.
Furthermore this optimal solution depends on p the sought value and is thus not imple-
mentable. However as for the Importance Sampling estimator (see Section 1.2) it can give
guidelines for a practical suboptimal implementation.

1.3.2 Adaptive splitting

The optimal settings for the splitting method found in Section 1.3.1 are not usable in
practice. Indeed they require to know in advance the target probability p and the cdf of
g(X) to define the sequence (Fi)mi=1. Moreover it is not possible to generate iid. conditional
samples from scratch. While it could be possible to use an oracle sequence (qi)mi=1 to define
suboptimal subsets, or to get such a sequence from a first pilot run [Botev and Kroese,
2008, 2012], an other option is to define the splitting on-the-fly while the algorithm is
running. These strategies are referred to as adaptive.

Subset Simulation The basic idea is to select the subsets iteratively with a heuristic
approach based on a current population, i.e. a set of iid. samples. The optimality result
for the conditional probability p∗0 gives a possible choice for this heuristic method: get qi
as the crude Monte Carlo estimator of the p0 quantile, with p0 a given arbitrary value
(often set to 0.1). A direct application of this principle leads to the Subset Simulation
method (see Algorithm 2).

On lines 4 and 9 of Algorithm 2, qm+1 is the crude Monte Carlo estimator of a quantile
of order 1 − p0, i.e. the d1 − p0e ordered statistic of the N0−samples [see for example
Arnold et al., 1992]. The sequential approach of this algorithm does not only serve the
definition of the subsets but also to sample from the conditional distributions (line 7).
Indeed its link with Sequential Monte Carlo methods [Chopin, 2002, Del Moral et al., 2006,
Le Gland, 2007, Vergé et al., 2013, Smith et al., 2013, Beskos et al., 2016] and Interacting

12

1.3. Splitting

Algorithm 2 Subset Simulation [Au and Beck, 2001, Cérou et al., 2012]
Require: N0 ≥ 1 . the Monte Carlo population size for each subset
Require: p0 ∈ (0, 1) . a probability for defining the thresholds
Require: a sampler of µX(· | g(X) > y),∀y < yR the right endpoint of Y .

p̂SS = 1, m = 0, qm = −∞
Sample N0 iid. particles (Xj)N0

j=1 ∼ µX(· | g(X) > qm)
3: ∀j ∈ J1, N0K, Yj = g(Xj)
qm+1 = Y(dN0(1−p0)e)

while qm+1 < q do
6: m← m+ 1

Resample the N0(1− p0) Xj such that Yj < qm according to µX(· | g(X) > qm)
Evaluate g on the new samples

9: qm+1 = Y(dN0(1−p0)e)

p̂SS ← p̂SS × p0

end while
12: qm+1 ← q

p̂r0 = 1
N0

N0∑
i=1

1g(Xi)>q

p̂SS = p̂SS × p̂r0

Particles System [Del Moral, 2004] lets obtain the following result [Cérou et al., 2012]:

m
a.s.−−−−→

N0→∞
m0

def= b log p
log p0

c. (1.14)

Furthermore, assuming that the cdf of Y = g(X) is continuous, the estimator p̂SS supports
a Central Limit Theorem:

√
N0(p̂SS − p) L−−−−→

N0→∞
N (0, σ2

SS) (1.15)

with σ2
SS = p2

(
m0(p−1

0 − 1) + p−1
r0 − 1

)
and pr0 = pp−m0

0 .

The adaptive version of the splitting method succeeds in producing evenly spaced
subsets for all but the last one. These convergence results show that the adaptive version
of the algorithm converges toward the optimal one in some of its properties, namely the
number of subsets and the variance of the estimator. Yet it is biased:

N0
E [p̂SS]− p

p
−−−−→
N0→∞

m0(p−1
0 − 1). (1.16)

This positive bias is a direct consequence of the use of a Monte Carlo based quantile
estimator at each iteration. Furthermore, these results require the continuity hypothesis

13

Part I, Chapter 1 – Monte Carlo methods for rare events

of the cdf of g(X), which cannot be verified in practice.

Adaptive Multilevel Splitting An other heuristic approach used to defined iteratively
the sequence (qi)mi=1 is to select the k−ordered statistic. We will refer to this implementation
as the Adaptive Multilevel Splitting (AMS) method; it is described in Algorithm 3.

Algorithm 3 Adaptive Multilevel Splitting [Cérou and Guyader, 2007, Bréhier et al.,
2015a]
Require: N0 ≥ 1, k ∈ J1, N0 − 1K

Require: a sampler of µX(· | g(X) > y), ∀y < yR the right endpoint of Y .
M = 0; qM = −∞; p̂AMS = 1
Sample N0 iid. particles (Xj)N0

j=1 ∼ µX(· | g(X) > qM)
3: ∀j ∈ J1, N0K, Yj = g(Xj)
qM+1 = Y(k)

while qM+1 < q do
6: M ←M + 1

p̂AMS ← p̂AMS ×
1
N0

N0∑
i=1

1g(Xi)>qM

Resample the particles such that Yj ≤ qM according to µX(· | g(X) > qM)
9: Evaluate g on the new samples

qM+1 = Y(k)

end while
12: qM+1 ← q

p̂AMS = p̂AMS ×
1
N0

N0∑
i=1

1g(Xi)>q

Before the work of Bréhier et al. [2015a] the algorithm used at line 7 the ready-made
formula p̂i = 1− k/N . However if the cdf of g(X) is not continuous the ordered statistic
may not be unique and the estimator is not consistent. The issue of possible discontinuities
in the cdf of g(X) has gained a lot of attention recently [Simonnet, 2016] and will be
further discussed in Section 3.5. This correction insures the unbiasedness of the estimator
in any case.

With the continuity hypothesis, Bréhier et al. [2015b,c] showed a Central Limit Theorem
and gave theoretical formulae for the variance, whatever k. However one of the main
differences between Algorithms 2 and 3 lies in the number of iterations: while it converges
toward a deterministic value in the first case (see Eq. 1.14) it remains here a non-degenerate
random variable and is thus denoted by capitalM . We report here the results from [Bréhier

14

1.3. Splitting

et al., 2015c, Section 5.2] with our notations:

E [M] = N0

k

(
− log p− (k − 1)(− log p− 1)

2N0
+ o

(1
N0

))
(1.17)

var [p̂AMS] = p2

N0

(
− log p+ (log p)2 + (k − 1)| log p|

2N0
+ o

(1
N0

))
. (1.18)

While the expected number of iterations decreases with k (see Eq. 1.17), the variance of
the estimator is the smallest with k = 1. An optimal setting can be found when looking
at the variance against the total number of generated samples. Precisely the cost of an
estimator is defined as the product of its coefficient of variation and the computing effort
required to generate it (see also further Section 1.5 and Section 4.3):

var [p̂AMS]
p2 × (k E [M] +N0) =

(
| log p|+ | log p|2

)(
1 + | log p|

2N0

)

+ | log p|(k − 1)
N0

+ o
(1
N0

)
. (1.19)

Last Particle Algorithm Equations (1.18) and (1.19) show that the optimal (minimal
variance and cost) choice for the adaptive multilevel splitting method is to set k = 1. With
the continuity hypothesis this can be understood because this choice leads to evenly spaced
subsets: all of them will be estimated with the same value 1− 1/N . This special case is
referred to as the Last Particle Algorithm [Guyader et al., 2011, Simonnet, 2016]: at each
iteration of Algorithm 3, only the particle with the smallest Yj is resampled (see line 8; a
complete description of the Last Particle Algorithm is given in Appendix A, Algorithm
22).

It can be noticed that with this setting and in the idealised case where conditional
simulations are performed exactly, the random number of iterations M follows a Poisson
distribution with parameter −N0 log p [Huber and Schott, 2011, Guyader et al., 2011].
This result lets have the exact distribution of the estimator p̂LPA whatever N0 and so
allows for building non-asymptotic confidence intervals. Finally the properties of the Last
Particle Algorithm with the continuity hypothesis are the following ones:





M ∼ P (−N0 log p)
E [M] = var [M] = −N0 log p

p̂LPA =
(

1− 1
N0

)M

E [p̂LPA] = p

δ2
LPA = p−1/N0 − 1 = − log p

N0
+ o

(1
N0

)

. (1.20)

Inverting the relation between p̂LPA and M , Guyader et al. [2011] also defined a quantile

15

Part I, Chapter 1 – Monte Carlo methods for rare events

estimator:
q̂LPA = qM0 (1.21)

with M0 = d log p
log(1−N−1

0)
e and qm the minimum found at iteration m of Algorithm 3 with

k = 1. This estimator will be further discussed in Chapter 3, Section 3.4.

Comparison between ideal and adaptive splitting The adaptive strategy lets define
two practical Splitting algorithms. In these implementations it is not possible to insure a
total fixed number of generated samples N . The Subset Simulation method (Algorithm 2)
lets approach it because its random number of iterations converges almost surely toward a
constant. However it is biased.

The other implementation, referred to as Adaptive Multilevel Splitting (Algorithm 3)
makes use of the k−ordered statistic to define iteratively the thresholds and then uses a
crude Monte Carlo. It is unbiased and can handle discontinuities in the cdf of g(X) (see
also Section 3.5 on this latter issue). Amongst all the possible choices for k ∈ J1, N − 1K,
k = 1 (Last Particle Algorithm) has been shown to be optimal in terms of total variance
of the final estimator against expected total number of generated samples. Furthermore
the distribution of the Last Particle Algorithm estimator is well-determined. In table 1.2
we summarise these results.

Ideal splitting Optimal adaptive splitting

Subset definition p∗0 ≈ 0.2032 k = 1

Nbr. of subsets m = log p/ log p∗0 M ∼ P(−N0 log p)

Nbr. of samples N N0 ×m deterministic M +N0 random

Coef. of var. δ2 − log p
N0

(p∗0)−1 − 1
− log p∗0

+ o
(1
N

) − log p
N0

+ o
(1
N0

)

N VS δ2 (log p)2

δ2
(p∗0)−1 − 1
(log p∗0)2 +o

(1
δ2

)
P
(

(log p)2

log (δ2 + 1)

)
+

− log p
log (δ2 + 1)

Table 1.2: Comparison between ideal and adaptive splitting when the cdf of g(X) is

continuous. Note that (p∗0)−1 − 1
− log p∗0

≈ 2.46 and that (p∗0)−1 − 1
(log p∗0)2 = 1.54 with p∗0 = 0.2032.

In a sequential strategy such as the one described in Algorithm 2, the fixed parameter
is not N the total number of generated samples but N0 the number of samples per step.
In this context Table 1.2 shows that the optimal choice would be p0 → 1 in order to have
δ2

MS ≈ − log p0/N0. This is achieved with the Last Particle Algorithm, which shows that it
is the best adaptive strategy for the Multilevel Splitting method. On the other hand, when
N is fixed, one can calculate the probability that the total number of samples generated by

16

1.3. Splitting

the optimal adaptive strategy is lower than the one with optimal p∗0 ≈ 0.2. Using Normal
approximation of a Poisson distribution and an asymptotic expansion in 1/δ2 one has:

P [NLPA < NMS] = P


(

log p
δ

)2

+
(

log p
δ

)
U + | log p|

δ2 <

(
log p
δ

)2

1.54



= P
[
U <

1
δ

(0.54| log p| − 1)
]

with U ∼ N (0, 1). Standard values of p . 10−5 and δ = 10% give (0.54| log p| − 1) δ−1 ≈
56.77 and so one can conclude that the optimal Adaptive Splitting will always (i.e. with
great probability) generate less samples than the optimal Splitting with fixed number of
samples N . This justifies the fact that in the sequel we will focus on adaptive Splitting
even if the original industrial problem is often defined with a fixed computational budget.

1.3.3 Conditional sampling

In practice the adaptive splitting uses Markov chains to simulate according to the condi-
tional distributions. At least this will increase the variance of the estimator. Very recently
this issue has been tackled by Bréhier et al. [2015a] who show that the estimator remains
unbiased in the dynamic case X = (Xt)t using the Markov property of the trajectory and
successive appropriate filtrations; and by Cérou and Guyader [2016] who proved the same
Central Limit Theorem as their previous result in the ideal case [see Cérou et al., 2012].

In this section we present commonly used tools to perform these simulations for both
the static X ∈ X ⊂ Rd and the dynamic case (Xt)t ∈ X ⊂ (Rd)R. While a lot of ongoing
research is devoted to the improvement of such methods and more advanced algorithms are
now available, this thesis focuses on finding an optimal (in some sense specified throughout
the manuscript) estimator given these conditional simulations are possible. In a sense, we
focus on optimising the estimators while these researches strive to make them more robust.
These two approaches are complementary and this distinction justifies the fact that the
skilled reader may find that this section lacks depth.

Metropolis-Hastings method When X ⊂ Rd for some d ≥ 1, one looks indeed for
a simulator of the truncated distributions µX(· | g(X) > y) for all y in the support of
µY . Assuming that µX has a density π with respect to the Lebesgue measure, it means
that one wants to simulate X ∼ 1g(x)>yπ(x)/P [g(X) > y]. A general idea for simulating
from a given distribution known up to a given constant is to use the convergence property
of a Markov chain to its unique invariant measure. This strategy is referred to as the
Metropolis-Hastings algorithm in the literature, from the pioneering work of Metropolis
and Ulam [1949] further extended by Hastings [1970]. This presentation follows [Delmas
and Jourdain, 2006].

The idea of this algorithm is to select an irreducible transition kernel and to modify its

17

Part I, Chapter 1 – Monte Carlo methods for rare events

dynamic to manipulate indeed a transition kernel with stationary distribution the one we
look for. More precisely let f be a target distribution density and Q be transition kernel
probability density such that ∀(x1,x2) ∈ X2, Q(x1,x2) = 0 ⇔ Q(x2,x1) = 0 we build a
function ρ : X2 → (0, 1] such that f is reversible for the modified kernel ρQ:

∀(x1,x2) ∈ X2, f(x1)ρ(x1,x2)Q(x1,x2) = f(x2)ρ(x2,x1)Q(x2,x1). (1.22)

The function ρ is considered as a probability of acceptance and should verify the equation:

ρ(x1,x2) = γ

(
f(x2)Q(x1,x2)
f(x1)Q(x2,x1)

)
, ∀(x1,x2) ∈ X2 | Q(x1,x2) > 0

with γ : R∗+ → (0, 1] verifying γ(u) = uγ(1/u). The case γ(u) = min(1, u) corresponds to
the Metropolis-Hastings algorithm while γ(u) = u/(1 + u) stands for the Boltzmann one
for instance.

Then, from a given X0 taking values in the support of f , a sequence X1, · · · ,Xn is
built as follows (see also Algorithm 16):

1. generate Xn+1 ∼ Q(Xn, ·);

2. sample U ∼ U [0, 1] independently;

3. if U > ρ(Xn,Xn+1), Xn+1 ← Xn;

4. n← n+ 1.

Hence (Xn)n is a Markov chain with transition kernel defined by:

P (x1,x2) = ρ(x1,x2)Q(x1,x2)

for x2 6= x1 and:
P (x1,x1) = 1−

∫

X\{x1}
P (x1,x2)dx2

for all (x1,x2) ∈ X2. Eq. (1.22) implies that (Xn)n is a reversible irreducible Markov
chain for f since Q is supposed to be irreducible. So its invariant distribution is f . If
furthermore (Xn)n is aperiodic, it converges in law to f .

In our practical implementations f(x) ∝ 1g(x)>yπ(x) for some y in the support of µY

and Q is always chosen to be a symmetric kernel such that ρ reduces to:

ρ(x1,x2) = min
(

1,1g(x2)>y
π(x2)
π(x1)

)
= 1g(x2)>y min

(
1, π(x2)
π(x1)

)
. (1.23)

This latter equality shows that the Metropolis-Hastings algorithm can be computed
in two steps: 1) the drawing of a sample which has indeed π as target distribution,
2) the acceptance-rejection scheme to insure that it is in the right domain. Eventually,

18

1.3. Splitting

if µX is a distribution for which a ready-made transition kernel K is available, then the
Metropolis-Hastings algorithm can be simplified:

1. generate Xn+1 ∼ K(Xn, ·);

2. if g(Xn+1) < y, Xn+1 ← Xn;

3. n← n+ 1.

For instance if π is the standard multivariate normal distribution, then a possible choice
for K is [Guyader et al., 2011, Cérou et al., 2012]:

K(x1,x2) =
√

1 + σ2

2πσ2 exp

−1 + σ2

2σ2

(
x2 −

x1√
1 + σ2

)2

 (1.24)

which practically speaking means that:

Xn+1 = Xn + σU√
1 + σ2

with U an independent standard Gaussian vector. The parameter σ > 0 has to be tuned.
It is often initialised at 0.3 and updated on-the-go to get an acceptance ratio close to
30% (lowered or augmented by a factor of 10% iterations after iterations) [Guyader et al.,
2011]. In a more general setting, usual choices for Q are based on U a centred Uniform or
Gaussian random variable and the proposed transition:

Xn+1 = Xn + σU

accepted with probability ρ(Xn,Xn+1) with ρ given by Eq. (1.23).

Gibbs sampler The Gibbs sampler also works with finite dimensional vectors and is
specifically designed for high dimensional input spaces X. Indeed it makes an iterative
sampling of the one-dimensional conditional distributions where all but one coordinates
are fixed [see for example Ross, 2013].

Algorithm 4 A systematic Gibbs sampler
Require: X ∼ f the target density

draw X∗1 ∼ f(x1 | X2, · · · , Xd)
for i ∈ J2, d− 1K do

3: draw X∗i ∼ f(xi | X∗1 , · · · , X∗i−1, Xi+1, · · · , Xd)
end for
draw X∗d ∼ f(xd | X∗1 , · · · , X∗d−1)

6: return X∗ ∼ f

19

Part I, Chapter 1 – Monte Carlo methods for rare events

We consider X = (X1, · · · , Xd) a random vector with distribution f . In a systematic
Gibbs sampler (see Algorithm 4), the coordinates of X are resampled iteratively according
to their index. In a random Gibbs sampler, each coordinate is first chosen at random
with the draw of a uniform random variable over the discrete set {1, · · · , d}. Another
variant, namely the Metropolis-within-Gibbs sampler, makes use of a Metropolis-Hastings
transition kernel to generate according to the conditional distributions (lines 1, 3 and 5).
This has been shown to improve upon the standard Metropolis-Hastings algorithm when
the dimension of the input space is high [Au and Beck, 2001].

Dynamic case Recall that in the dynamic case, X ⊂ (Rd)R, the goal is to estimate
the probability that a trajectory – a random process often the solution of a stochastic
differential equation – enters a given set B before another set A. These sets are metastable
and the probability to escape from one to another is very low. In this context the function
g which was given in the static case is now somehow an artefact used to quantify the
proximity of one trajectory to the target set. This function is referred to as the reaction
coordinate or the importance function. The effectiveness of the splitting algorithm may
depend strongly on a proper choice for g [Glasserman et al., 1998, Bréhier, 2015].

On the other hand, the conditional simulation of the trajectory is almost straightforward
for Markov Process: from a given trajectory X = (Xt)t for which g(X) > y for some y
in the support of µY one wants to sample above, one only has to replicate the trajectory
until the first time ty it reaches {X ∈ X | g(X) > y} and then to simulate the original
dynamic from this entrance state Xty (the stochastic differential equation for instance).
The possible side effects of time discretisation have been taken into account by Bréhier
et al. [2015a] and this algorithm remains unbiased.

Finally, note that all these algorithms for simulating conditional distributions do not
output iid. samples. Usually the first samples are discarded to reach the stationary
distribution and this is referred to as the burn-in. The correlation between samples
can then be reduced by selecting only a fraction of the chain: the thinning is the ratio
of selected samples, for instance one sample each b steps. Note that when the initial
sample already follows the target distribution, the burn-in indeed only serves independence
purpose.

1.4 Nested sampling

Nested sampling was introduced in the Bayesian framework by Skilling [2006] as a method
for “estimating directly how the likelihood function relates to prior mass”. Formally, it
builds an approximation for the evidence:

Z =
∫

Θ
L(θ)π(θ)dθ,

20

1.5. Efficiency of the estimators

where π is the prior distribution, L the likelihood, and Θ ⊂ Rd. It is somehow a quadrature
formula but in the [0, 1] interval rather than in the original multidimensional space Θ:

Z =
∫ 1

0
Q(P)dP,

where Q is the quantile function, which is the generalised inverse of:

P (λ) =
∫

L(θ)>λ
π(θ)dθ. (1.25)

Hence the name nested sampling because the initial input space is divided into nested
subsets {θ ∈ Θ | L(θ) > λ}. Indeed this latter quantity (Eq. 1.25) is exactly the one
estimated in rare event simulation for a given λ.

The recent Bayesian Updating with Structural reliability (BUS) method [Straub and
Papaioannou, 2014, Straub et al., 2016] exploits this link and proposes to plug several
reliability tools into this integral (FORM/SORM, Line Sampling and Subset Simulation
for instance). The Generalised Adaptive Multilevel Splitting method of Bréhier et al.
[2015a] focuses on the branching of the adaptive multilevel splitting while the practical
implementation suggested by Skilling [2006] is indeed the Last Particle Algorithm. These
links and further results will be presented in Chapter 4.

For now, we just come up with the formulation of Skilling [2006]: let (L(Xi))i be the
sequence of the successive minima of the Last Particle Algorithm with N0 particles, then
form the following estimator:

Z̃ =
T∑

i=1
L(Xi)

(
e
i−1
N0 − e

i
N0

)
(1.26)

with T a given stopping time which has to be tuned or selected according to some given
criterion. The convergence of the approximation error toward a Gaussian distribution has
been proven [Chopin, 2002] assuming that Q is twice continuously differentiable with its
two first derivatives bounded over [ε, 1] for some ε > 0. Yet the termination rule of the
nested sampling algorithm is an open issue and Chapter 4 will bring some new insight
onto it using Multilevel Monte Carlo (MLMC) methods. We will also propose corrected
weights for sum (1.26) and give other theoretical results on the nested sampling estimator.

1.5 Efficiency of the estimators

Two different notions are usually used to quantify the quality of an estimator in the rare
event context: 1) its robustness, i.e. how it behaves when the probability becomes smaller;
and 2) its reliability, i.e. which confidence intervals can be built and how reliable they
are. Indeed, confidence intervals often require to estimate not only the sought probability
but also a variance, and this may result in very bad confidence intervals. These notions

21

Part I, Chapter 1 – Monte Carlo methods for rare events

will be presented here but the reader interested in more details and examples is referred
to [Rubino et al., 2009, Section 4] and [L’Ecuyer et al., 2010] for even more advanced
concepts.

Remember that the main problem of this thesis is the estimation of the quantity (1.1),
it is: p = P [g(X) > q] for a given q. Assume that we have defined an estimator p̂ of p for
any q, one considers the relative moment of order k of the estimator p̂:

mk(q) =
E
[
p̂k
]

pk
. (1.27)

The estimator p̂ is said to have a Bounded Relative Moment of order k (BRMk) if:

lim sup
q→∞

mk(q) <∞. (1.28)

Note that by usual properties of the moments of a random variables, one has ∀k <

k′, BRMk′ ⇒ BRMk. Especially p̂ has a Bounded Relative Error (BRE) if its coefficient
of variation remains finite when p goes to 0:

lim sup
p→0

σ

p
<∞.

In Section 1.1.2 we have derived confidence intervals for the crude Monte Carlo estimator.
Precisely their width are directly proportional to the coefficient of variation of the estimator.
Hence the BRE means that the width of the interval decreases at least as fast as the
quantity p itself.

This property is quite stringent and it can happen that no estimator is found satisfying
it in some applications. In this context the weaker Logarithmic Efficiency (LE) is used.
An estimator will have the LE property of order k ≥ 1 if:

log E
[
p̂k
]

k log p −−→
p→0

1. (1.29)

This means that the estimator goes to 0 as fast as the sought quantity p. This is the
best possible rate for an unbiased estimator since one has: E

[
p̂k
]
− pk ≥ 0 from Jensen’s

inequality.
As an illustration, the optimal adaptive multilevel splitting algorithm defined in Section

1.3.2, it is the Last Particle Algorithm, does not have a bounded relative error:

δ2
LPA = p−1/N0 − 1 −−→

p→0
∞.

However it asymptotically achieves the logarithmic efficiency for all k ≥ 1:

log E
[
p̂kLPA

]

k log p = N0

k

[
1−

(
1− 1

N0

)k]
= 1− k − 1

2N0
+ o

(1
N0

)
.

22

1.5. Efficiency of the estimators

Another interesting attribute of the Last Particle Algorithm is that the estimation
of the variance is much less sensitive than in a crude Monte Carlo algorithm thanks to
the Poisson distribution of the random number of iterations M [Huber and Schott, 2011].
While crude Monte Carlo requires the estimator of the expectation to build an estimator
of the variance, in the Last Particle Algorithm one has straight away an estimator of the
relative variance:

δ2
LPA = − log p

N0
+ o

(1
N0

)
= E

[
M

N2
0

]
+ o

(1
N0

)
.

Hence M/N2
0 is a biased estimator of δ2

LPA whose variance var [M/N2
0] = − log p/N3

0 is not
more sensitive to the extreme event that the one of p̂LPA.

23

Chapter 2

Rare event simulation and surrogate
models

We have defined in Chapter 1 advanced statistics to estimate a probability of exceeding a
threshold (see Eq. 1.1). However it can happen that the computational budget is so small
that there are still too many calls to the computer code using these methods. As a matter
of fact in some industrial settings, and especially the one we are interested in, the goal is
to estimate p . 10−5 with N ≈ 100 to 1000 calls to the code.

In this chapter we restrict ourselves to the case where X = Rd or X ⊂ Rd is a hypercube
for some d ≥ 1. While this assumption may not be necessary for defining the mathematical
tools below, it makes it simpler and it corresponds indeed to our real industrial setting: x
is a set of parameters of a computer experiment g : x ∈ X 7→ y ∈ R. In this context, g
is called the limit-state function defining the failure domain F = {x ∈ X | g(x) > q}, for
some q ∈ R. The random parameters are modelled with X a random vector defined on an
underlying probability space (Ω,F ,P) with induced measure µX over X and g is assumed
to be measurable. Like in the previous chapter, the probability of failure is hence defined
by p = µX(F).

The problem of approximating a computer code g seen as a black-box from a set of
its input-output couples (xi, g(xi))Ni=1, N ≥ 1 is rather usual and the reader interested in
an overview of this topic is referred to books by Santner et al. [2003], Hastie et al. [2005],
Fang et al. [2005], Rasmussen and Williams [2006], Forrester et al. [2008] or recent PhD
thesis by Chevalier [2013] and Le Gratiet [2013]. More dedicated results on uncertainty
quantification can be found in [Ghanem et al., 2017].

In the rare event setting, it means that one has to rely on cheap-to-compute approxima-
tions, either of the boundary, which is equal to {x ∈ X | g(x) = q} provided g is continuous
(construction of a classifier) or of g over the whole domain X. Then the computational
budget can be spent enriching these metamodels and final computations be performed
only with them. The use of such techniques requires to answer mainly three questions:
1) what kind of metamodels should be used? 2) how to make the metamodel g̃ closer to
the real model g or to the boundary? and 3) how to use the metamodel? Some surrogate
models do not give any precise information on the closeness of g̃ to g or to the boundary
while others, like Kriging [Krige, 1951], define pointwise distribution of the error. Hence
enrichment strategies will also depend on the metamodel used.

We review here some of the most usual surrogate models used for rare event estimation

25

Part I, Chapter 2 – Rare event simulation and surrogate models

following the three questions above mentioned. Another general introduction can be found
in [Sudret, 2012]. Reader is referred to the proceedings of the most recent international
conferences [Deodatis et al., 2014, Haukaas, 2015] for last updates and improvements of
practical algorithms.

2.1 Usual surrogate models

As specified in the introduction, a metamodel is then an analytical function belonging to
a specific class of functions (its type) characterised by a set of parameters tuned using the
available data. It is expected to be fast to compute and so to be used in the statistical
methods seen in Chapter 1.

2.1.1 First/Second order reliability method

The First-Order Reliability method (FORM), defined for standard Gaussian input spaces:
X = Rd and X ∼ N (0, Id) with Id the identity matrix in dimension d, is based on a linear
approximation of the limit-state function around the so-called Most Probable Failure Point
(MPFP). Indeed this method assumes that the origin is not in the failure domain and so
the MPFP is the failure point x∗ that is the closest to the origin:

x∗ = argmin
x∈X

||x||2 s.t. g(x) > q (2.1)

with || · ||2 a Euclidean norm. In the original FORM method, this point is supposed to
be unique, i.e. that the problem (2.1) has a unique solution. Then, provided g is smooth
enough, the Taylor expansion at x∗ writes:

g(x) = g(x∗) +∇g(x∗)>(x− x∗) + o (||x− x∗||2) (2.2)

such that if one only retains the first order approximation for the probability of failure,
one finds:

p ≈ P
[
g(x∗) +∇g(x∗)>(X− x∗) > q

]

≈ P
[
∇g(x∗)>X > g(x∗)>x∗

]

≈ P
[
d∑

i=1

∇g(x∗)i
||∇g(x∗)||2

Xi >
∇g(x∗)>x∗
||∇g(x∗)||2

]
.

Now recall that the problem is supposed to be defined in the standard Gaussian space,
and so the left-hand side is indeed a sum of weighted iid. standard Gaussian ran-
dom variables. Hence it is a Gaussian random variable with mean 0 and variance
∑d
i=1∇g(x∗)2

i /||∇g(x∗)||22 = 1. Furthermore, the gradient ∇g(x∗) and x∗ are parallel.

26

2.1. Usual surrogate models

Eventually the probability rewrites:

pFORM = 1− Φ (βHL) (2.3)

with Φ the cdf of a standard Gaussian random variable and:

βHL = ∇g(x∗)>x∗
||∇g(x∗)||2

= ||x∗||2

the so-called the Hasofer-Lind reliability index. Practically speaking, a FORM algorithm
requires to solve a quadratic optimisation problem under non-linear constraint. We refer
the reader to the book by Ditlevsen and Madsen [1996] or Zhang and Der Kiureghian
[1995] for standard algorithms to solve this problem.

x∗

g(x) > q

g(x) < q

-5.0

-2.5

0.0

2.5

5.0

-5.0 -2.5 0.0 2.5 5.0
x1

x
2

Figure 2.1: First-Order Reliability Method (FORM). The limit-state function (blue line) is
approximated with a hyperplane at the Most Probable Failure Point x∗. X = (X1, X2) ∼
N (0, I2).

Since the first-order approximation may be too rough, a higher order expansion of
the limit-state function has been considered, which leads to the Second-Order Reliability
Method (SORM) [Breitung, 1984]. It just goes one step ahead in the Taylor expansion of
the limit-state function around the MPFP:

g(x) = g(x∗) +∇g(x∗)>(x− x∗) + 1
2(x− x∗)>∇2g(x∗)(x− x∗) + o

(
||x− x∗||22

)
(2.4)

27

Part I, Chapter 2 – Rare event simulation and surrogate models

with ∇2g(x∗) the Hessian matrix of g at x∗. Using again only the first orders instead of
the function for the probability estimation:

pSORM = P
[
∇g(x∗)>(X− x∗) + 1

2(X− x∗)>∇2g(x∗)(X− x∗) > 0
]

Breitung [1984] showed the following approximation in the limit case βHL →∞:

pSORM ∼
βHL→∞

Φ(−βHL)
d−1∏

i=1

1√
1 + βHLκi

(2.5)

with (κi)d−1
i=1 the principal curvatures of the limit-state surface, i.e. the eigenvalues of

the Hessian matrix [Koyluoglu and Nielsen, 1994, Ditlevsen and Madsen, 1996]. This
approximation is used in practice when βHL & 3.

The limitations of these methods are twofold: firstly it requires that the failure domain
be a connected space; secondly it makes assumptions on the shape of the limit-state
function without any possible control onto it. To circumvent the first limitation, some
multi-points FORM/SORM methods have been proposed [Der Kiureghian and Dakessian,
1998] but the problem remains the same in essence. Ultimately the search for the MPFP
is not trivial and an other source of uncertainty.

2.1.2 Support-Vector Machine

Support Vector Machine (SVM) finds its root in the field of statistical learning applied
to image recognition. Originally developed for classification, it is now a common tool in
machine learning for regression. It has recently been used for rare event simulation and
reliability analysis by several authors [Rocco and Moreno, 2002, Most, 2007, Xiukai et al.,
2009, Basudhar and Missoum, 2010, Bourinet et al., 2011, Bourinet, 2016]. In this Section
we present the main concepts of SVM for classification focusing on the reliability setting,
i.e. classification with two labels, namely “failure” and “safety” modes. Reader is referred
to the tutorial paper of Smola and Schölkopf [2004] for a general description of Support
Vector Machine in regression.

Main concept The main idea of Support Vector Machine is to build a linear classifier
in the input space X according to some labels attached to the points in X, i.e. to build an
hyperplane H separating the input space X in two parts such that each one corresponds
to one label. More precisely to each x ∈ X is associated a deterministic value y in {−1, 1}
defining its state. In our context, y = sign (g(x)− q) and y = 1 means that x is in the
failure domain while y = −1 means that it is in the safety one.

It lies in the field of supervised learning as it builds this frontier from a given set
(xi, yi)Ni=1 ∈ X× {−1, 1} of known points. Let ω ∈ X and b ∈ R, the hyperplane is then of

28

2.1. Usual surrogate models

the form:
H = {x ∈ X | 〈ω,x〉+ b = 0}

with 〈·, ·〉 the natural inner product in X. On the other hand the constraint on the right
classification of the points means that on each side of the hyperplane, all the samples have
the same label, i.e. the same sign. Even if that implies to switch the sign of the labels,
this can be written:

∀i ∈ J1, NK, sign(〈xi, ω〉+ b) = yi = ±1.

The constraint on the right classification for each point can then be rewritten:

∀i ∈ J1, NK, (〈xi, ω〉+ b)yi ≥ 1.

With this setting, the margin of the classifier, i.e. the minimum distance between the two
parallel hyperplanes around H such that no sample is in between them, is at least 2/||ω||2.
Finally, if one wants to maximize this margin one should minimize ||ω||2 and the SVM
optimisation problem rewrites:

min
ω,b

1
2 ||ω||

2
2 s.t. ∀i ∈ J1, NK, yi(〈ω,xi〉+ b) ≥ 1. (2.6)

This optimisation problem can be solved with standard calculation. Let (λi)Ni=1 be the
Lagrange multipliers and L(ω, b) the corresponding dual function, one has:





∂L
∂ω

= ω +
N∑
i=1

λiyixi = 0
∂L
∂b

=
N∑
i=1

λiyi = 0
.

Furthermore, the Karush-Kuhn-Tucker (KKT) conditions [see for example Boyd and
Vandenberghe, 2004] writes:

∀i ∈ J1, NK, λi (yi(〈xi, ω〉+ b)− 1) = 0.

On the one hand ω writes as a linear combination of the data points (xi)Ni=1; on the
other hand the KKT conditions mean that only the points right on the borders (active
constraint) will have non-zero multipliers. All together, this means that the classifier is
ultimately defined only by the vectors on the margin. Figure 2.2 shows an example of
such a classifier.

This active property means also that new samples outside of the margin will not change
the classifier. In other words, if one intend to learn better the boundary between the
failure and the safety region, one has to sample only into the margin. This property will
be further developed in Section 2.2.

29

Part I, Chapter 2 – Rare event simulation and surrogate models

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x
2

Figure 2.2: Example of a SVM classifier with a linear kernel. Plains dots are the active
samples

Non-linear classifier The approach and methodology seen above is the very first
formulation of what was then called the Portrait method [Vapnik, 1963, Vapnik and
Chervonenkis, 1964]. However it happens often that the data are not linearly separable,
and here comes what is referred to as the kernel trick. In few words, it replaces the natural
inner product of the space X by another function called a kernel. Without digging too
much into the Reproducing Kernel Hilbert Space theory [Aronszajn, 1950] and its link
with SVM [Wahba et al., 1999] we give the main idea of such a transformation.

A non-negative kernel k : X×X→ R is a symmetric continuous function such that for
any (a1, · · · , an) ∈ Rn and distinct (x1, · · · ,xn) ∈ Xn, n ≥ 1, one has:

n∑

i,j=1
aiajk(xi,xj) ≥ 0 (2.7)

with equality iff. ∀i ∈ J1, NK, ai = 0. The Mercer theorem lets clarify the link between
the original linear SVM, i.e. the SVM with a linear kernel (the natural scalar product
of X) and this new version. Let Tk be the linear integral operator on L2(X) the space of
square-integrable functions such that:

Tk : φ ∈ L2(X) 7→
∫

X
k(x, ·)φ(x)dµ(x)

with µ a measure on X such that µ(X) is finite and supp(µ) = X.

30

2.1. Usual surrogate models

Theorem 2.1 (Mercer’s theorem [Mercer, 1909, Ferreira and Menegatto, 2009]). If k is
a continuous symmetric positive kernel such that supx∈X k(x,x) < ∞, then there is an
orthonormal basis (φi)i of L2(X) consisting of eigenfunctions of Tk such that the corre-
sponding sequence of eigenvalues (λi)i is non-negative. The eigenfunctions corresponding
to non-zero eigenvalues are continuous on X and k has the representation:

∀(x1,x2) ∈ X2, k(x1,x2) =
∞∑

j=1
λj φj(x1)φj(x2).

Theorem 2.1 shows that using a kernel k instead of the natural inner product can be
seen as using the natural inner product in another space mapped with the eigenfunctions of
Tk. This auxiliary space is referred to as the feature space and is practically speaking never
precisely characterised. Instead, one chooses directly a kernel amongst a set of known
admissible options and speaks about the kernel trick because it allows for mapping X into
another space where the problem is linearly separable, but without specifying exactly this
space.

As a matter of fact, the kernels implemented in the R [R Core Team, 2015] package
e1071 [Meyer et al., 2015] wrapping the reference libsvm C++ library by Chang and Lin
[2011] are given in Table 2.1.

Kernel Expression Parameters
Linear k(x1,x2) = x>1 x2

Polynomial k(x1,x2) = (γx>1 x2 + β)n γ > 0, β ∈ R, n > 0
Gaussian k(x1,x2) = e−γ||x2−x1||22 γ > 0
Sigmoid k(x1,x2) = tanh

(
γx>1 x2 + β

)
γ > 0, β ∈ R

Table 2.1: Usual kernels for a SVM classifier.

Figure 2.3 shows an example of a SVM classifier using a Gaussian kernel. On the one
hand it is able to create a frontier between samples not linearly separable. On the other
hand one can see that the margin is not empty any more (there are samples in between the
two dashed lines). Indeed it often happens that there is no feasible solution to Problem
(2.6); to circumvent this limitation slack variables (ξi)i ∈ R+ are introduced to lower the
constraints:

∀i ∈ J1, NK, ci (〈ω,xi〉+ b)) ≥ 1← ci (〈ω,xi〉+ b)) ≥ 1− ξi. (2.8)

This can even allow for misclassification of some points and these parameters as well as
the ones in the kernel have to be tuned. As mentioned by Meyer et al. [2015]:

The correct choice of kernel parameters is crucial for obtaining good results,
which practically means that an extensive search must be conducted on the
parameter space before results can be trusted.

31

Part I, Chapter 2 – Rare event simulation and surrogate models

0

1

2

-2 -1 0 1 2
x1

x
2

Figure 2.3: Example of a SVM classifier with a Gaussian kernel generated with R package
e1071. Plain dots are the active samples.

2.1.3 Polynomial-Chaos expansion

Polynomial Chaos expansion has been introduced by Ghanem and Spanos [1990] for
stochastic finite elements methods. It can be seen as a linear projection of g onto a
specific orthonormal basis based on the distribution µX of the random input. With this
specification the function g should be well-approximated in the areas of high probability.

Framework Let us consider that X ∼ µX the random input has independent coordinates
with densities (fXi)di=1 (for the sake of simplicity of this presentation; this is indeed not
a requirement, see the generalised Polynomial Chaos expansion framework [Ernst et al.,
2012]). Recall that we have assumed that either X = Rd or X ⊂ Rd is an hypercube, let
us write: X = X1 × · · · × Xd. Then for each i ∈ J1, dK, a family of polynomials (P (i)

j)j,
orthonormal with respect to the inner product defined by fXi is built [Soize and Ghanem,
2004]:

〈P (i)
j , P

(i)
k 〉 =

∫

Xi
P

(i)
j (x)P (i)

k (x)fXi(x)dx = δjk

with δjk the Kronecker symbol equals to 1 if j = k and 0 otherwise. The multidimensional
polynomials are then built by tensorisation: with each d−tuple α = (α1, · · · , αd) ∈ Nd one

32

2.1. Usual surrogate models

builds the polynomial Ψα(x), x ∈ X:

Ψα(x) =
d∏

i=1
P (i)
αi

(xi)

so that they inherit the orthonormal property:

E [Ψα(X)Ψβ(X)] = δαβ

thanks to the independence of the coordinates of X. Then the linear projection of g onto
this orthonormal basis is:

g(x) =
∑

α∈Nd
aαΨα(x). (2.9)

Table 2.2 summarises usual polynomials used according to the distribution of X (namely
its marginals).

Distribution pdf Orthogonal basis Orthonormal basis
Uniform 1(−1,1)(x)/2 Legendre Pk(x) Pk(x)(2k + 1)−0.5

Gaussian (2π)−0.5e−x
2/2 Hermite Hk(x) Hk(x)/

√
k!

Gamma xae−x1x>0 Laguerre Lak(x) Lak(x)/
√

Γ(k+a+1)
k!

Table 2.2: Usual polynomial families for Polynomial Chaos expansion.

Metamodelisation From Eq. (2.9) the Polynomial Chaos expansion appears as a specific
case of a linear projection over a basis selected according to the distribution of the input
random variable X. In this context the decomposition can be truncated to serve as a
cheap surrogate model for g. As a rule of thumb the truncation is often limited to all
polynomials with a total order |α| =

d∑
i=1

αi ≤ r with r = 2 or 3:

g̃(x) =
∑

α∈Ar
aαΨα(x) (2.10)

with Ar = {α ∈ Nd | |α| ≤ r}. The total order r can also be chosen adaptively according
to a given target precision, the error being estimated with cross-validation [Blatman and
Sudret, 2010, 2011].

The last case to handle is the estimation of the coefficients (aα) in Eq. (2.10). Using
the projection property, one has:

∀α ∈ Ar, aα =
∫

X
g(x)Ψα(x)fX(x)dx.

These integrals can then be evaluated using quadrature rules [Ghiocel and Ghanem, 2002,
Le Maître et al., 2002, Keese and Matthies, 2005], stochastic collocation methods [Xiu,

33

Part I, Chapter 2 – Rare event simulation and surrogate models

2009] or regression methods [Blatman and Sudret, 2010, 2011]. This latter is essentially
a least-square regression: from an experimental design set (xi)Ni=1 ∈ XN one solves the
minimisation problem:

a∗ = argmin
a∈RcardAr

N∑

i=1


g(xi)−

∑

α∈Ar
aαΨα(xi)




2

with a = (aα1 , · · · , aαcardAr). A rule of thumb for the size N of the design set is to keep
N ≥ 2 − 3 × cardAr [Blatman, 2009, Sudret, 2012]. In our setting, typical parameters
would be r = 3 and d = 10, which makes N ≥ 2− 3× 103/3! ≈ 300− 500. This is still
quite a lot of calls to the computer code g and furthermore Polynomial Chaos expansion
does not lead to easy enrichment strategies (see Section 2.2 below) because it tries to learn
the function especially over the most probable regions of the input space. Note however
that it has been recently used in conjunction with Kriging [Schöbi et al., 2016] for trend
estimation (see Section 2.1.4).

2.1.4 Kriging
Gaussian Process regression has been receiving a lot of attention recently in computer
experiment [Sacks et al., 1989, Fang et al., 2005, Rasmussen and Williams, 2006]. It is a
special case of Kriging [Krige, 1951, Matheron, 1963, 1969, Chiles and Delfiner, 2009], a
statistical approach based on the use of random processes to approximate an unknown
function, where the random process is actually assumed to be Gaussian. It has then been
used in rare event estimation with main contributions from Bichon et al. [2008], Bect et al.
[2012], Dubourg et al. [2011] and Echard et al. [2011]. In this introduction we present
Kriging from the geostatistical point of view following Chauvet [2008], i.e. without any
assumption of Gaussianity for the random process.

Kriging framework

Random process Kriging is based on the idea that the unknown computer code g is a
realisation of a random process ξ defined over a given probability space (Ω0,F0,P0) and
indexed by x ∈ X:

ξ : (x× ω) ∈ (X× Ω0) 7→ ξ(x, ω) ∈ R. (2.11)

Here, for all x ∈ X, ξ(x) is then a real-valued random variable and one implicitly assumes
that:

∃ω ∈ Ω0 | ∀x ∈ X, g(x) = ξ(x, ω).

We now assume that the random process ξ is stationary with a finite covariance k:

∀x ∈ X, E0 [ξ(x)] = m(x) = m (2.12)
∀(x1,x2) ∈ X2, cov0 [ξ(x1), ξ(x2)] = k(x1,x2) <∞. (2.13)

34

2.1. Usual surrogate models

The stationary hypothesis means that the law of the random process does not depend on
the origin of the plane. Consequently the mean is constant (Eq. 2.12) and the covariance
k(x1,x2) only depends on the relative position x1−x2 of one point to the other (Eq. 2.13).

Kriging Kriging is the idea of approximating a linear functional of ξ with a linear
combination of ξ at other given locations (x1, · · · ,xN) ∈ XN , N ≥ 1. Such linear
functional can be for instance the mean:

m = E0 [ξ(x)] , x ∈ X,

or simply the process ξ at another location x ∈ X. Let us write Q this quantity, one is
going to consider an estimator Q̂ of Q of the form:

Q̂ =
N∑

i=1
λiξ(xi)

with (λi)Ni=1 ∈ RN the so-called kriging weights. Then one enforces the estimator to be
unbiased:

E0
[
Q̂
]

=
N∑

i=1
λi E [ξ(xi)] = m

N∑

i=1
λi = E0 [Q] .

If m is known, one can consider from the beginning ξ(x) ← ξ(x) −m, i.e. m = 0 and
so the constraint rewrites 0 = 0. This case is often referred to as the Simple Kriging
(stationary process, null mean and known covariance). On the other hand if m is unknown,
then the constraint is active. Especially, if Q = m or the random process at some other
location, E0 [Q] = m and it becomes:

N∑

i=1
λi = 1.

This case is referred to as the Ordinary Kriging (or kriging of the mean if Q = m) and is
the framework usually used in the rare event setting. Finally, one looks for the estimator
whose error is optimal (minimal variance) and so solves the optimisation problem:

argmin
(λi)Ni=1∈RN

var0
[
Q̂−Q

]
s.t.

N∑

i=1
λi = 1. (2.14)

Ordinary Kriging solution The minimisation problem defined in Eq. (2.14) rewrites:

argmin
λ∈RN , µ∈R

λ>Kλ + var0 [Q]− 2k>Qλ + 2µ
(
1>λ− 1

)

with:

K the covariance matrix K = (k(xi,xj))1≤i,j≤N of the random variables ξ(x1), · · · , ξ(xN);

35

Part I, Chapter 2 – Rare event simulation and surrogate models

kQ the vector (cov0 [Q, ξ(x1)] , · · · , cov0 [Q, ξ(xN)])>;

λ the column vector of the kriging weights;

1 a column vector of dimension N full of 1;

µ the Lagrange multiplier for the constraint.

Then the solution is given by the system:




Kλ + µ1 = kQ
1>λ = 1

(2.15)

which rewrites: 
K 1

1> 0




λ

µ


 =


kQ

1


 . (2.16)

From Eq. (2.16) one notices that the kriging weights λ do not depend on the known data
(ξ(xi))Ni=1 but only on their locations (xi)Ni=1 through the covariance function. Furthermore,
Eqs. (2.15) and (2.16) give:

λ>Kλ = λ>kQ − µ = 2λ>kQ − (λ>, µ)

kQ

1




var0
[
Q− Q̂

]
= var0 [Q]− (k>Q, 1)


K 1

1> 0



−1
kQ

1


 .

The prediction variance does not depend on ξ = (ξ(x1), · · · , ξ(xN))> and so it is possible
to estimate the precision of an estimation given a dataset (x1, · · · ,xN) without actually
computing the model at these locations. Kriging only makes use of the relative position
from one point to another through the covariance (see Eq. 2.17). This specific property
will be used in Section 2.2.3 to derive strategies for enriching the design of experiments.

Finally the system (2.15) is solved with:




λ = K−1kQ + µK−11

µ = 1− 1>K−1kQ
1>K−11

. (2.17)

and the quantity Q̂ verifies:

Q̂ = λ>ξ = k>QK−1ξ + 1>K−1ξ
1− 1>K−1kQ

1>K−11 (2.18)

or equivalently:

Q̂ = k>QK−1
(

ξ − 11>K−1ξ

1>K−11

)
+ 1>K−1ξ

1>K−11 . (2.19)

36

2.1. Usual surrogate models

This formulation simplifies when Q = m because kQ = (0, · · · , 0)>, which gives:

m̂ = 1>K−1ξ

1>K−11 ; (2.20)

Q̂ = k>QK−1 (ξ − 1m̂) + m̂. (2.21)

On the other hand, the solution of the Simple Kriging with known mean m can be obtained
from Eq. (2.15) by writing µ = 0 and discarding the constraint:

Q̂−m = k>QK−1(ξ − 1m). (2.22)

All together, Eqs. (2.21) and (2.22) show that it is equivalent to apply the Kriging
framework to the random process with unknown mean or to first estimate the mean and
then to perform a simple kriging plugging-in the estimated mean.

Universal Kriging This paragraph addresses the issue of the stationary hypothesis. To
this end the Universal Kriging refers to the case where the mean is expressed as a finite
sum of basis functions:

m(x) =
J∑

j=1
αjfj(x) = f>x α, J ≥ 1

with (fj)Jj=1 the basis functions: ∀j ∈ J1, JK, fj ∈ RX, fx = (f1(x), · · · , fJ(x))> and
(αj)Jj=1 ∈ RJ unknown coefficients (otherwise the mean would be known and simple kriging
apply). The underlying assumption is that the non-stationary part of the process will be
captured by the mean (then often called the trend) and that the remaining random process
is thus stationary. In this context the constraint on the bias becomes:

∀α ∈ RJ , λ>Fα− f>x α = 0, i.e. F>λ− fx = 0

with F the matrix gathering the values of the basis functions on the dataset F> =
(fx1 , · · · , fxN) and α = (α1, · · · , αJ)>. There are finally J equality constraints and so
system (2.16) becomes: 

K F
F> 0




λ

µ


 =


kQ

fx


 (2.23)

with µ ∈ RJ the vector of the Lagrange multipliers. If this system is feasible the same
calculations and conclusions as above for the ordinary kriging stand, substituting F to 1:

α = (F>K−1F)−1F>K−1ξ (2.24)
Q̂ = k>QK−1 (ξ − Fα) + f>x α (2.25)

var0
[
Q̂−Q

]
= var0 [Q]− (k>Q, f>x)


K F

F> 0



−1
kQ

fx


 . (2.26)

37

Part I, Chapter 2 – Rare event simulation and surrogate models

A necessary condition for the feasibility of the system is that the family of basis functions be
linearly independent over the data. Usually they are chosen amongst usual basis functions
of L2(X) (e.g. polynomial functions) and this condition is always satisfied. Finally, it is
important to notice that Kriging interpolates the data: systems (2.16) and (2.23) have a
trivial solution if Q = ξ(xi) for some i ∈ J1, NK, precisely λi = 1 and ∀j 6= i, λj = 0.

Gaussian process framework

Gaussian process regression While we have been able to solve the kriging system
without further assumptions that the covariance of the random process is finite, in computer
experiments it is always assumed that ξ is a Gaussian process. There are mainly three
reasons for that:

1. the covariance was supposed to be known. Indeed it is chosen amongst several
acceptable kernels like in Section 2.1.2 and some parameters have to be estimated,
especially the variance σ2

0 = k(x,x), ∀x ∈ X. Assuming that ξ is Gaussian lets have
the joint density of the N−tuple (ξ(x1), · · · , ξ(xN)) and apply a Bayesian approach
to parameter estimation or use Maximum Likelihood Estimation (MLE);

2. while kriging gives an expression of the error variance, it does not give the distribution
of the prediction. Assuming that ξ is Gaussian lets build confidence intervals; and

3. Kriging seeks for the minimal variance linear combination of the data. Indeed it
is known that the best way (minimal variance) to approximate a given random
variable with some others is to use the conditional expectation. While in traditional
Geostatistics it has led to the Disjunctive Kriging, the Gaussian hypothesis insures
that the Universal Kriging is also the conditional expectation, i.e. the best estimator
one can produce given the data.

In this context we are going to use further in this thesis the notations:

FN the filtration generated by the N random variables ξ(x1), · · · , ξ(xN);

ξN(x) the conditional expectation ξN(x) = E0 [ξ(x) | FN] and

σ2
N(x) the conditional variance var0 [ξ(x) | FN].

With the Gaussian hypothesis, ξN corresponds to the kriging predictor given by Eq. (2.25)
and σ2

N is the kriging error (see Eq. 2.26). In the sequel, quantities evaluated conditionally
to the filtration FN will be subscripted by N :

EN [·] = E0 [· | FN]
varN [·] = var0 [· | FN]

PN [·] = P0 [· | FN] .

38

2.1. Usual surrogate models

Parameter estimation In the previous parts we have assumed that the covariance was
known. Indeed, as for Support-Vector Machine in Section 2.1.2 the covariance is chosen
amongst a family of usual kernels whose parameters have to be estimated. Furthermore it
is also more common to specify such kernels as correlation instead of covariance kernels:

∀(x1,x2) ∈ X2, k(x1,x2) = σ2
0r(x1,x2)

with r depending only on a set of parameters θ ∈ Rd
+ representing the typical correlation

lengths in each dimension and σ2
0 the stationary variance of the random process. Then the

multidimensional correlation kernel r is usually defined by tensorisation of unidimensional
kernels [Rasmussen and Williams, 2006]:

r(x1,x2) =
d∏

i=1
ri(x1,i , x2,i).

Let (xi)Ni=1 ∈ XN with N ≥ 1, the Gaussian hypothesis lets have the likelihood of the
random vector ξ = (ξ(x1), · · · , ξ(xN)) given the parameters α (the coefficients of the
trend), σ2

0 (the variance of the random process) and θ (the parameters of the correlation
kernel):

f(ξ | α, σ2
0,θ) = 1

(2πσ2
0)N/2

√
| det R(θ)|

exp
(
−1

2
(ξ − Fα)>R(θ)−1(ξ − Fα)

σ2
0

)
(2.27)

with R(θ) the correlation matrix of the data R(θ) = (r(xi,xj))Ni,j=1. Then, maximising
first this quantity against α conditionally to σ2

0 and θ results in:

α(θ) = (F>R(θ)−1F)−1F>R(θ)−1ξ (2.28)

which is already the result found in Eq. (2.24) solving the Universal Kriging system (2.23).
Injecting this value into Eq. (2.27) and maximising it against σ2

0 for a given θ hence
produces:

σ2
0(θ) = 1

N
(ξ − Fα(θ))>R(θ)−1(ξ − Fα(θ)) (2.29)

and so finally for the likelihood against θ:

f(ξ | θ) = e−N/2

(2πσ2
0(θ))N/2

√
det R(θ)

. (2.30)

A solution can be found by minimising the opposite of the log-likelihood:

∀i ∈ J1, NK,
∂

∂θi
(− log f(ξ | θ)) =

− 1
σ2

0
z(θ)>R(θ)−1∂R(θ)

∂θi
R(θ)−1z(θ) + tr

(
R(θ)−1∂R(θ)

∂θi

)
(2.31)

39

Part I, Chapter 2 – Rare event simulation and surrogate models

with z(θ) = ξ − Fα(θ). This MLE estimation is the most commonly used and the
default one in R package DiceKriging [Roustant et al., 2012]. However it is specific to the
Gaussian random process case while kriging has been theoretically defined for any random
process with finite covariance (or such that the Universal Kriging framework applies).

To circumvent this limitation, an other technique from [Bachoc, 2013] is based on
cross-validation (CV). CV splits the learning database (ξ(x1), · · · , ξ(xN)) into two sets
such that the first one is used to predict the values of the other one. By comparing
the predicted values to the true ones this technique aims at estimating the predictive
capacity of a model. A specific case of such methods is the Leave-One-Out cross-validation
(LOO-CV) when all-but-one samples are used to predict the value at the removed one. By
iterating over all the possible combinations of training/predicted samples, a statistic is
built and minimised according to the parameter θ: let εi be the error in estimating ξ(xi)
with (ξ(xj))Nj=1

j 6=i
, then [see Le Gratiet, 2013, for a detailed calculation]:

εi(θ) = r̄i
[
R(θ)−1(z(θ)− Fα−i(θ))

]
[i]

with r̄i = (R(θ)−1
[i,i])−1 and α−1(θ) given by Eq. (2.24) where the ith data point was

removed. Note that we have used computer-like notations for the matrix indices, i.e.
brackets indicating which coordinates are kept or dropped (negative sign).

θ is estimated by minimising the sum of the error terms, which does not depend on σ2
0:

θ∗ = argmin
θ∈Rd+

N∑

i=1
ε2
i (θ). (2.32)

Still σ2
0 has to be estimated; Bachoc [2013] suggests to use:

σ̂2
0 = 1

N

N∑

i=1

ε2
i

σ̃2
i (θ∗)

with:
σ̃2
i (θ) = r̄i + r̄i

2(R−1F)[i,](F>[−i,]R−1
[−i,−i]F[−i,])−1(R−1F)>[i,].

Covariance kernel This is the last requirement of Kriging. We have mentioned in the
previous paragraph that there were often tensorised unidimensional correlation kernels
chosen amongst a family of usual ones. We give in Table 2.3 directly the most usual
choices implemented in R package DiceKriging. The choice of the kernel will impact the
smoothness of the random process. Indeed, when X = Rd, a stationary Gaussian process
ξ(x), x ∈ X, with covariance cov0 [ξ(x1), ξ(x2)] = k(x1 − x2) is mean square continuous if
and only if k is continuous at h = 0; and admits partial mean square derivatives of order
j : ∂jξ(x)/∂xi1 · · · ∂xij if and only if ∂2jk(h)/∂2hi1 · · · ∂2hij exists and is finite for h = 0.

To conclude this section, we stress out the fact that Kriging can be conduced without
the Gaussian hypothesis, which may be difficult to verify in practice. As for any machine

40

2.2. Design of Experiments

Kernel Expression: r(x, x’) = Parameters
Gauss exp

(
−1

2
|x−x′|2
θ2

)
θ > 0

Exponential r exp
(
− |x−x′|

θ

)
θ > 0

Power-exponential exp
(
−
(|x−x′|

θ

)γ)
θ > 0, 0 < γ ≤ 2

Matern(3/2)
(

1 +
√

3 |x− x
′|

θ

)
e−
√

3 |x−x
′|

θ θ > 0

Matern(5/2)

1 +

√
5 |x− x

′|
θ

+ 5
3

(
|x− x′|

θ

)2

 e−

√
5 |x−x

′|
θ θ > 0

Table 2.3: Usual 1−dimensional kernels for Kriging.

learning methods, some parameters have to be tuned to produce accurate results. However
in the case of Kriging, the physical meaning of the correlation lengths, i.e. more or less
the hypersphere of influence of a data point, can give insights on the pertinence of the
estimation. Especially when the input space is the standard Gaussian one: X = Rd, d ≥ 1
and X ∼ N (0, Id) with Id the identity matrix in Rd, the impact of correlation lengths
on probability estimation is easily interpretable: for instance a correlation length θi & 10
means that for each data point x ∈ X, the whole line x + Rei (with ei the ith coordinate
vector of Rd) will be in the same domain as x (failure of safety) with great probability. In
addition to this first remark, the kriging mean does not depend on the variance parameter
σ2

0. For all these reason Kriging will be a preferred choice in Chapter 5.

2.2 Design of Experiments

2.2.1 First Design of Experiments

This first Design of Experiments (DoE) is a set of points initially evaluated at the beginning
of an algorithm. They are chosen in order to acquire a global knowledge of the function
before trying to focus on the rare events. Indeed the importance of the DoE should not
be underrated: as explained by Echard et al. [2011] for its AKMCS method, its is very
unlikely that the algorithm converges toward the sought value if no failing samples are
embedded into the first DoE.

This section presents usual concepts and methods for generating a first DoE following
Pronzato and Müller [2012]. Other general introductions to the design of computer
experiments can be found in books by Santner et al. [2003], Fang et al. [2005] or Kleijnen
[2008]. A recent comparative study has also been performed by Damblin et al. [2013].

As expressed by the fact that one looks for a global knowledge of the computer code,
one is going to consider so-called space-filling designs, i.e. designs which spread out
uniformly across the input space X. Recall that we have assumed X = Rd or X ⊂ Rd is an
hypercube, and since there is no uniform distribution over R, one is going to consider a

41

Part I, Chapter 2 – Rare event simulation and surrogate models

compact subset X0 ⊂ X. This subset X0 is often chosen to be an hypercube in Rd and
with appropriate renormalisation we consider X0 = [0, 1]d. Other approaches based on
hyperspheres are also proposed in the literature for standard Gaussian input spaces for
instance [Dubourg et al., 2011]. The distance considered in the following is the Euclidean
distance and is denoted by || · ||2. The distance of x ∈ X0 to a given subset X ⊂ X0 is
defined by d(x,X) = minx′∈X ||x− x′||2.

Let us consider X = (x1, · · · ,xNDoE) ∈ XNDoE
0 an initial DoE. The size NDoE ≥ 1 of

this first evaluated batch will not be discussed here. Guidelines can be found in [Loeppky
et al., 2012]; as a rule of thumb NDoE ≈ 5 to 10d, with d the dimension of the input space
(note that for parameters estimation of Section 2.1.4, one should have NDoE ≥ d+ 1).

Two main different geometric criteria are used to characterise space-filling DoE over
X0 [Johnson et al., 1990]:

1. the maximin criterion, which aims at maximising the minimum distance φm(X)
between two samples of the DoE:

max
X∈XNDoE

0

φm(X) = max
X∈XNDoE

0

min
(xi 6=xj)∈X 2

||xi − xj||2;

2. the minimax criterion which minimises the maximum distance φM(X) between any
sample in X0 and X :

min
X∈XNDoE

0

φM(X) = min
X∈XNDoE

0

max
x∈X0

d(x,X).

However in addition to good space-filling properties one also looks for good projection
properties, i.e. that the projection of X on each dimension should also be a space-filling
design for the one-dimensional subset. This is useful when focusing on main important
variables while some others play no substantial role in the variation of the output; see
for instance [Saltelli et al., 2008] or [Iooss and Lemaître, 2015] for a review of sensitivity
analysis methods, which will not be addressed in this thesis. In any case, this leads to
focusing on Latin Hypercube Sampling (LHS), which have the property that any of their
one-dimensional projections leads to the maximin distance sequence [Pronzato and Müller,
2012] defined by:

∀i ∈ J1, NK, xi = i− 1
N − 1 .

Practically speaking, finding an optimal LHS (according to maximin and/or minimax
criterion) can be computationally intensive. Indeed there are (NDoE!)d−1 possible LHS,
which rapidly discards any attempt to perform an exhaustive search over all the solutions.
Most of the algorithms are of exchange-type, i.e. that starting from a random LHS they
iteratively switch the ith coordinates of two samples and update the current value of the
criterion to accept or reject the transition.

42

2.2. Design of Experiments

All these geometrical properties however do not take into account the fact that this first
DoE may have to serve also the estimation of the model parameters. Basically space-filling
designs will produce somehow evenly spaced samples while estimating correlation lengths
requires some diversity. This issue of kriging-parameter estimation is addressed by Pronzato
and Müller [2012]. Also the R package DiceDesign [Dupuy et al., 2015] implements the
Strauss-Gibbs process, historically introduced to represent repulsion between charged
particles, and used here to generate suitable DoE for kriging [Dupuy et al., 2011]. The
Strauss-Gibbs potential is of the form:

π(X) ∝ exp

−β

∑

1≤i,j≤NDoE

φ(||xi − xj||2)



with γ = e−β ∈ (0, 1] a repulsion parameter and φ : R→ R a decreasing continuous function
such that φ(0) = 1 and φ(x)→ 0 when x→∞. More specifically, φ is parametrised by
α ≥ 0 and r > 0 such that:

φα,r(x) =





(
1− x

r

)α
0 ≤ x ≤ r

0 otherwise
.

α = 0 corresponds to a Strauss process and in this case the target distribution becomes:

π(X) ∝ γs(X)

with s(X) the number of pairs of points in X closer than the radius r.

Once a first DoE X is sampled and a first metamodel is built according to the calculated
outputs (g(x1), · · · , g(xNDoE)), algorithms focus on refining the DoE according to some
given target criteria defined on purpose. These procedures are iterative in order to benefit
progressively from the calculations to refine the metamodel.

Remark 2.1. Batch sequential strategies are sometimes used when computer clusters are
available and so allow for simultaneous computations of several points. Note however
that these strategies are in essence suboptimal regarding the total number of calculated
samples N because they use less information than totally sequential ones. In the latter the
(n+ 1)th point is selected taking into account the n already sampled data; with batches of
size k ≥ 2 samples n+ 1, · · · , n+ k are generated with the information gathered with the n
first points, i.e. that points n+ 2, · · · , n+ k are generated with less information than their
sequential counterparts. Furthermore heavy computer codes are usually already designed to
use parallel computing facilities and so a trade-off has to be found between parallelisation
of one given run of the code g and running in parallel several calls to g.

43

Part I, Chapter 2 – Rare event simulation and surrogate models

2.2.2 Model-oriented designs
In this section we present some of the main criteria used in practical algorithms for refining
the metamodel. We first handle the case of a SVM metamodel (see Section 2.1.2) and
then come up with criteria based on random processes, and especially criteria for kriging
using the Gaussian hypothesis (see Section 2.1.4). Theoretical and numerical comparisons
of criteria presented in this Section can be found in [Bect et al., 2012] and [Dubourg, 2011,
Chapter 2].

As mentioned in Section 2.1.2, SVM classifiers in their original setting only depend on
the so-called support-vectors, i.e. vectors which define the classifier and so are onto the
margin, defined by the constraints of Eq. (2.6):

M1 = {x ∈ X | |k(ω,x) + b| < 1}. (2.33)

In this setting, adding points to the DoE out of the margin will not change the classifier.
Even though the introduction of slack variables in the optimisation problem (Eq. 2.8)
makes it slightly more complex to predict the behaviour of the classifier when adding a
new point to the DoE, this consideration leads to a heuristic strategy called the margin
shrinking concept [Hurtado, 2013] used for example by Deheeger [2008] and Bourinet et al.
[2011] for SMART and 2SMART algorithms:

1. get samples into the margin, either from the DoE, or by a crude Monte Carlo
sampling;

2. generate a Monte Carlo population conditionally to be into the margin by using for
instance MCMC algorithms (see Section 1.3.3);

3. select a batch of k ≥ 1 points by clustering [see for instance Duda et al., 2012]; and

4. evaluate the model g and train it with the augmented DoE.

Due to the definition of a SVM, the margin concept is natural for this class of models.
However it carries the idea that in the context of rare event simulation, the metamodel
does not need to be precise far from the boundary. The only useful information for a
Monte Carlo estimator for instance (see Chapter 1) is whether or not the sample lies into
the failure domain. These considerations lead to some variations of this concept applied
to the Gaussian process regression. Recall that ξ(x) | Fn ∼ N (ξn(x), σn(x)), Echard et al.
[2011] define the so-called U statistic as a normalised algebraic distance to the failure
threshold q:

∀x ∈ X, U(x) = q − ξn(x)
σn(x) . (2.34)

Similarly to Eq. (2.33), the margin is defined asMk = {x ∈ X | |U(x)| < k}. A usual
value for k is 2, meaning that the margin is composed by points classified with less than
≈ 97.5% confidence. Building upon this result, Dubourg [2011] proposes a smoother

44

2.2. Design of Experiments

version of this concept with the so-called margin probability function MP. Instead of using
directly the kriging mean ξn(x) in Eq. (2.34), it considers the random process ξ itself. The
U statistic becomes:

∀x ∈ X, Ũ(x) = q − ξ(x)
σn(x)

with conditional mean En

[
Ũ(x)

]
= U(x) and variance varn

[
Ũ(x)

]
= 1. Considering the

hard-margin indicator 1x∈Mk
, one finally has:

1x∈Mk
= 1|U(x)|<k ← MP(x) = En

[
1|Ũ(x)|<k

]
= Pn

[
|Ũ(x)| < k

]
. (2.35)

Since ξ is a Gaussian random process, the distribution of Ũ(x) given Fn is known and one
has:

MP(x) = Φ (U(x) + k)− Φ (U(x)− k)

MP(x) = Φ
(
q − ξn(x) + kσn(x)

σn(x)

)
− Φ

(
q − ξn(x)− kσn(x)

σn(x)

)
(2.36)

with Φ the cdf of a standard Gaussian random variable. Both the hard-margin indicator
and the margin probability function can then be used to weight usual criteria for Gaussian
processes such as the Integrated Mean-Squared Error (IMSE):

IMSE =
∫

X
σ2
n(x)dµX(x).

For instance, Picheny et al. [2010] defined the targeted IMSE as a weighted IMSE designed
to focus on some regions of interest:

tIMSE =
∫

X
σ2
n(x)w(x)dµX(x) (2.37)

with w a given weighting function. Picheny et al. [2010] suggested to use either a hard-
margin indicator w(x) = En

[
1|ξ(x)−q|<ε

]
for a given ε > 0 or a smoother version with the pdf

φσε of a Gaussian standard random variable N (0, σ2
ε), σε > 0: w(x) = En [φσε(ξ(x)− q)].

The hard-margin indicator En

[
1|ξ(x)−q|<ε

]
is closely related to the margin probability

function MP: this latter is a special case of the former, parametrised with ε = σn(x)k, k > 0.
Hence it admits also a closed-form expression:

En

[
1|ξ(x)−q|<ε

]
= Φ

(
q − ξn(x) + ε

σn(x)

)
− Φ

(
q − ξn(x)− ε

σn(x)

)
.

On the other hand the soft-margin indicator En [φσε(ξ(x)− q)] is indeed the convolution
of two Gaussian random variables and one has [Picheny et al., 2010]:

En [φσε(ξ(x)− q)] = 1√
2π(σ2

ε + σ2
n(x))

e
− 1

2
(ξn(x)−q)2
σ2
ε+σ2

n(x) .

45

Part I, Chapter 2 – Rare event simulation and surrogate models

Then this tIMSE criterion is used in a one-step-look-ahead strategy: since the kriging
variance does not depend on the random variables (ξ(xi))ni=1 but only on their locations
(xi)ni=1, one can update it assuming that a new point x∗ is added to the DoE: σ2

n,x∗(x) =
var0 [ξ(x) | Fn,Xn+1 = x∗] and calculate:

tIMSE(x∗) =
∫

X
σ2
n,x∗(x)w(x)dµX(x).

Then a possible refinement strategy is to select the point minimising the forthcoming
tIMSE, i.e.:

xn+1 = argmin
x∗∈X

tIMSE(x∗).

2.2.3 Stepwise Uncertainty Reduction

The idea of using a criterion based on the next metamodel is at the very heart of Stepwise
Uncertainty Reduction (SUR) strategies. But instead of considering an arbitrary measure
of uncertainty (for instance the margin and the IMSE in the previous section), it rather
focuses on the error between the chosen estimator and the sought quantity. Bect et al.
[2012] developed this general concept with a Bayesian decision-theoretic framework and
applied it to rare event estimation. We focus here on the rare event setting and refer the
reader to the original paper for a more general presentation of SUR strategies.

Basically, a SUR strategy is as follows:

1. select αn a Fn−measurable function as an estimator of the sought quantity α;

2. select a loss function ε(αn, α) quantifying the error between αn and α; and

3. select iteratively the next sample as the one minimising the forthcoming error:

xn+1 = argmin
x∗∈X

En [ε(αn+1, α) | Xn+1 = x∗] .

This strategy is referred to as a one-step-look-ahead SUR because it outputs only one
sample at a time. Similarly r-steps-look-ahead SUR can be defined. However according to
Remark 2.1 this is not obviously suitable (if the parameters of the covariance are estimated
for instance) while increasing drastically the complexity of the optimum research. In the
sequel we stick to the one-step-look-ahead strategy but all the formulations remain true
for any r ≥ 1.

In the context of rare event estimation, Bect et al. [2012] adopt a Bayesian approach,
i.e. that they put a Gaussian process prior on the unknown function g: ξ(x) is a Gaussian
random process indexed by x ∈ X with covariance kernel k. Thus they introduce the
augmented problem:

p =
∫

X
1g(x)>qdµX(x)← α =

∫

X
1ξ(x)>qdµX(x). (2.38)

46

2.2. Design of Experiments

The term “augmented” refers to the fact that this simply adds a dimension to the original
problem (1.1), according to Eq. (2.11). This approach will be further developed in Chapter
5. In this setting the quantity of interest α is not a deterministic value any more but a
random variable. Given a filtration Fn, an optimal estimator (minimal variance) of α is
the conditional expectation αn = En [α] and so the loss function ε is chosen to be the
quadratic loss:

ε(αn, α) = (αn − α)2.

Finally, the criterion to be minimised at each iteration writes:

Jαn,n+1(x∗) = En

[
(αn+1 − α)2 | Xn+1 = x∗

]
= En [varn+1 [α]] . (2.39)

In the end, the SUR strategy means that one iteratively select the point minimising the
conditional variance of the random variable of interest, i.e. which minimises the remaining
uncertainty in the approximation of α by En [α]. Chevalier et al. [2014] proposed a closed-
form expression for this formula for any r ≥ 1, with x∗ ∈ Xk, x∗ = (xn+1, · · · ,xn+r):

Jαn,n+r(x∗) = γn −
∫

X×X
Φ2




a(x1)
a(x2)


 ,


 c(x1) d(x1,x2)
d(x1,x2) c(x2)




 dµX(x1)dµX(x2) (2.40)

with:

• a(x) = (ξn(x)− q)/σn+r(x);

• b(x) = Σ−1(kn(x,xn+1), · · · , kn(x,xn+r))>/σn+r(x);

• c(x) = 1 + b(x)>Σb(x) = σ2
n(x)/σ2

n+r(x);

• d(x1,x2) = b(x1)>Σb(x2);

• γn a value not depending on (xn+1, · · · ,xn+r);

• Σ the r × r covariance matrix of (ξ(xn+1), · · · , ξ(xn+r))> conditional on Fn; and

• Φ2(·,M) the cdf of the centred bivariate Gaussian with covariance matrix M .

This quantity can indeed be rewritten:

Jαn,n+r(x∗) =
∫

X×X
∆Pn+r(x1,x2)dµX(x1)dµX(x2) (2.41)

with:

∆Pn+r(x1,x2) = Pn [ξ(x1) > q, ξ(x2) > q]− Pn

[
U

(1)
n+r(x1) > q, U

(2)
n+r(x2) > q

]
, (2.42)

47

Part I, Chapter 2 – Rare event simulation and surrogate models

where:

U

(1)
n+r(x1)

U
(2)
n+r(x2)


 | Fn ∼ N




ξn(x1)
ξn(x2)


 ,


σ

2
n(x1) covn [ξn+r(x1), ξn+r(x2)]

covn [ξn+r(x1), ξn+r(x2)] σ2
n(x2)




 . (2.43)

The two Gaussian couples in Eq. (2.42) differ only in their covariance: in this latter formula
the conditional expectation ξn+r is used instead of the original random process ξ. All these
formulae remain true for any r ≥ 0:

covn
[
U

(1)
n+r(x1), U (2)

n+r(x2)
]

= covn [ξn+r(x1), ξn+r(x2)] . (2.44)

On the one hand for r = 0, one finds back that conditionally to Fn, U (1)
n (x1) and U (2)

n (x2) are
independent random variables with distribution N (ξn(x1), σ2

n(x1)) and N (ξn(x2), σ2
n(x2))

respectively. This gives:
Jαn = En [varn [α]] = varn [α] .

One the other hand, the greater r the closer ξn+r to ξ in the quadratic mean, i.e. the
closer covn [ξn+r(x1), ξn+r(x2)] to covn [ξ(x1), ξ(x2)]. Eventually the criterion goes to 0 as
r →∞: if the size of the next batch of points to be estimated goes to infinity then the
error goes to 0.

From a practical point of view, only the second part of Eq. (2.40) depends on the
proposed point x∗ and needs to be evaluated. This integration over X× X of a bivariate
cdf of Gaussian random variables can be numerically demanding. However Chevalier et al.
[2014] showed that it is numerically almost as efficient (in terms of relative Root-Mean-
Squared Error of the estimation of p) to use an upper bound of Jαn,n+r based on an upper
bound of varn [α]:

varn [α] = varn
[∫

X
1ξ(x)>qdµX(x)

]

≤
(∫

X

√
varn

[
1ξ(x)>q

]
dµX(x)

)2

≤
∫

X
varn

[
1ξ(x)>q

]
dµX(x). (2.45)

This upper bound reduces the integration over X×X to an integration over X only. Denote
pqn(x) = Pn [ξ(x) > q] ,∀n ≥ 0, this latter formulation gives for the criterion:

Jαn,n+r(x∗) ≤ JΓ
n,n+r(x∗)

def=
∫

X
En [pqn+r(x) (1− pqn+r(x))] dµX(x), (2.46)

which can be rewritten [Chevalier et al., 2014]:

JΓ
n,n+r(x∗) =

∫

X
Φ2




 a(x)
−a(x)


 ,


 c(x) 1− c(x)

1− c(x) c(x)




 dµX(x). (2.47)

48

2.3. Metamodels and estimators

Once again this quantity can be rewritten using the same Gaussian couple (U (1)
n+r, U

(2)
n+r):

JΓ
n,n+r(x∗) =

∫

X
Pn

[
U

(1)
n+r(x) > q, U

(2)
n+r(x) < q

]
dµ(x). (2.48)

Even though criteria (2.39) and (2.46) are now expressed as the integral of a bivariate
Gaussian cdf whose dimension does not depend on r, a direct Monte Carlo approach to
quantify Eqs. (2.40) and (2.47) may fail to produce a correct estimation because of the
rarity of the event {ξ(x) > q}. Chevalier et al. [2014] proposed to use a combination of
crude Monte Carlo and Importance Sampling to circumvent this limitation. In Chapter 5
we will show how results on Poisson processes presented further in Chapter 3 can be used
to address this issue with reformulations (2.41) and (2.48), reducing this calculation to
the average of a univariate Gaussian cdf on a suitable population.

To conclude this section on designs of experiments, we stress out the fact that SUR
strategies appear as the most conservative and theoretically founded strategies. However
the price to pay in terms of numerical complexity can become relatively consequent and a
trade-off between criterion complexity and computational time of the computer code g
has to be found. This will be illustrated in the numerical examples of Section 5.3.

2.3 Metamodels and estimators

In this section, we address the issue of the selection of an estimator based on the metamodel
used. Indeed, while in Section 2.1.1 we have seen that the First Order Reliability Method
leads itself to an analytical expression of the probability of failure, the other approaches
need to be used in addition to Monte Carlo estimators such as the ones defined in Chapter
1.

In all this section, we hence consider that a surrogate model has been built with a
given number of calls to the real computer code g and we describe several possibilities for
building the estimator of p = P [g(X) > q].

2.3.1 Crude Monte Carlo estimator

The crude Monte Carlo method presented in Section 1.1 combines the advantages of
supporting a Central Limit Theorem, being consistent, easy to implement, parallelisable
and insensitive to the dimension of the problem. We saw that its main and only drawback
is that it is not well suited for rare event estimation as its squared coefficient of variation
typically scales like 1/(Np) with N the number of generated samples and p the sought
probability. However, if the metamodel is fast-to-compute, this number N can be high at
almost no cost comparing the to original code g.

For the sake of clarity we rewrite here the definition of the crude Monte Carlo estimator:

49

Part I, Chapter 2 – Rare event simulation and surrogate models

p̂MC = 1
N

N∑

i=1
1g(Xi)>q = 1

N

N∑

i=1
1Xi∈F (2.49)

with (Xi)Ni=1 N ≥ 1 iid. random variables with distribution µX and F = {x ∈ X | g(x) > q}
the failure domain. Hence a crude Monte Carlo estimator only requires to know whether a
given random sample X ∼ µX lies into the failure domain or not.

Hard classifiers, like SORM or a SVM, are especially designed to answer to this question
instead of the true computer code g. Without loss of generality, one considers a classifier
g̃ : X→ {0, 1} such that it returns 1 if the sample x is classified as failing and 0 otherwise.
This definition leads to the so-called plug-in approach:

p̂ = 1
N

N∑

i=1
g̃(Xi)

which gives an unbiased estimate of p̃HC = P
[
X ∈ F̃HC

]
with F̃HC = {x ∈ X | g̃(x) = 1}.

However there is no guarantee that p̃HC is close to p. Indeed one has:

p̃HC − p =
∫

X

(
g̃(x)− 1g(x)>q

)
dµ(x).

If the classifier does not provide any information on its proximity to the true limit-state
surface, the only way to estimate this quantity is to rely on a crude Monte Carlo estimation,
which means ending up with doing a crude Monte Carlo on the original computer code
g. This is clearly not an option and thus these approaches require to trust the classifier
without any possible control on it. This strategy is used for instance by Deheeger [2008]
in its algorithm called SMART based on a SVM (and so 2SMART too).

With a Bayesian perspective, it is also possible to define a classifier based on the
random process ξ. Recall that in this context the quantity of interest becomes a random
variable: α =

∫
X 1ξ(x)>qdµX(x), one looks for a classifier minimising the probability of

misclassification of a sample x ∈ X [Bect et al., 2012]:

P0
[
g̃(x) 6= 1ξ(x)>q

]
= E0

[(
g̃(x)− 1ξ(x)>q

)2
]

= g̃(x)2 P0 [ξ(x) ≤ q] + (g̃(x)− 1)2 P0 [ξ(x) > q]
= g̃(x)(1− P0 [ξ(x) > q]) + (1− g̃(x)) P0 [ξ(x) > q] .

This error is minimised for:

g̃ : x ∈ X 7→ g̃(x) =





1 P0 [ξ(x) > q] ≥ 0.5
0 P0 [ξ(x) > q] < 0.5

,

i.e. g̃(x) = 1ξ(x)>q with ξ(x) the median of ξ(x). If ξ is a Gaussian process: ∀x ∈

50

2.3. Metamodels and estimators

X, ξ(x) ∼ N (m(x), σ2(x)), then the mean and the median are the same and one finds:

g̃(x) = 1m(x)>q.

In other words the classifier built from a kriging metamodel minimising the probability of
misclassification is the classifier obtained by substituting the true computer code g with
the kriging mean. This hard-classifier is used for instance by Echard et al. [2011] for their
AKMCS (Active learning using Kriging and Monte Carlo Simulation) method.

On the other hand we have presented in Section 2.1.4 the conditional expectation of α
as a natural estimator for p, i.e. the one minimising the quadratic error. From a more
pragmatic point of view, one can simply consider that the Bayesian formulation just adds
a dimension to problem (2.11) but that it remains essentially the same, i.e. the estimation
of the probability that a deterministic real-valued function be above a threshold given the
distribution of its inputs:

p = PµX [g(X) > q]← p̃aug = PµX⊗P0 [ξ(X, ω) > q] . (2.50)

The integration over P0 can be calculated, which gives:

p̃aug =
∫

X×Ω0
1ξ(x,ω)>qdµX(x)d P0(ω) =

∫

X
P0 [ξ(x) > q] dµX(x). (2.51)

This latter quantity is referred to as the augmented failure probability by Dubourg [2011]
because on top of the uncertainty of the parameters of the model embedded in the random
vector X, one adds the uncertainty on the code itself. If the law of the random process ξ
is known, then this quantity can be estimated with a crude Monte Carlo for instance: for
all x ∈ X, let Φx be the complementary cdf of ξ(x), then:

p̂ = 1
N

N∑

i=1
ΦXi

(q)

is an unbiased estimator of p̃aug = EµX [ΦX(q)]. It is used for instance by Picheny et al.
[2010] and Bect et al. [2012]. One the one hand, p̃HC appears as a sort of thresholded
version of p̃aug:

p̃HC =
∫

X
1Φx(q)>0.5dµX(x) =

∫

X
[Φx(q)] dµX(x)

with [·] the rounding operator. On the other hand there is still no guarantee that p̃aug is
close to p and the same problem as for the hard classifier still holds.

2.3.2 Importance sampling-based procedures
The issue of the uncontrolled bias is inherent to the use of a metamodel as a direct proxy
for the true computer code g. To circumvent this limitation, the idea, first developed by
Dubourg [2011], is to use the metamodel to define an importance distribution.

51

Part I, Chapter 2 – Rare event simulation and surrogate models

We recall that the main concept of Importance Sampling is to use another distribution
µX̃ such that µX is absolutely continuous with respect to µX̃ . For the sake of simplicity of
this section and since it is always the case in our practical examples, we further assume
that both µX and µX̃ have a density with respect to a reference measure, for instance,
Lebesgue measure, π and π̃ respectively. We refer to Section 1.2 for a more general
introduction to Importance Sampling. The absolute continuity hypothesis means indeed
that ∀x ∈ X, π̃(x) = 0⇒ π(x) = 0 and the Importance Sampling scheme writes:

p =
∫

X
1g(x)>qπ(x)dx =

∫

X
1g(x)>q

π(x)
π̃(x) π̃(x)dx = EµX̃

[
1
g(X̃)>q

π(X̃)
π̃(X̃)

]
.

The importance distribution µX̃ minimising the variance of the Monte Carlo estimator
has the following density:

∀x ∈ X, π̃∗(x) = 1g(x)>qπ(x)
∫
X 1g(x)>qπ(x)dx = 1g(x)>qπ(x)

p
,

i.e. it is the original distribution truncated to the failure domain. Especially it depends
on the unknown quantity p. While it may not be possible to use a classifier to define an
importance density satisfying the absolute continuity condition (if the classifier says that
an area of the input space is safe while it is not), the soft-classifier P0 [ξ(x) > q] = Φx(q) is
never null when ξ is a Gaussian process for instance. This leads to the idea of approximating
the optimal π̃∗ with the soft-classifier:

∀x ∈ X, π̃(x) = P0 [ξ(x) > q] π(x)
∫
X P0 [ξ(x) > q] π(x)dx = P0 [ξ(x) > q] π(x)

p̃aug
. (2.52)

On the one hand p̃aug can be estimated with a crude Monte Carlo as explained in Section
2.3.1. On the other hand p can be estimated with (X̃i)Ni=1 N ≥ 1 iid. samples with
distribution µX̃ by:

p̂ = 1
N

N∑

i=1
1
g(X̃i)>q

π(X̃i)
π̃(X̃i)

= 1
N

N∑

i=1

1
g(X̃i)>q

P0
[
ξ(X̃i) > q

] p̃aug. (2.53)

Such Importance Sampling schemes are used for example by Dubourg et al. [2011],
Balesdent et al. [2013] or Cadini et al. [2014]. Also Bect et al. [2015] recently showed that
in a Bayesian framework, the optimal importance density is indeed:

∀x ∈ X, π̃(x) =

√
E0
[
1

2
ξ(x)>q

]
π(x)

∫
X

√
E0
[
1

2
ξ(x)>q

]
π(x)

=

√
P0 [ξ(x) > q]π(x)

∫
X

√
P0 [ξ(x) > q]π(x)dx

. (2.54)

Their numerical study seems to show a little improvement in terms of Mean Squared Error
against the importance density of Eq. (2.52). However from a practical point of view

52

2.3. Metamodels and estimators

these methods require to simulate at least a small number of times the heavy computer
code g for the estimator (2.53). This means stopping the enrichment step before having
spent all the computational budget available. The question of a good repartition of the
computational budget between the exploration phase and the Importance Sampling scheme
in order to minimise the Root Mean Squared Error of the estimator is still unclear.

Furthermore the variance of the Importance Sampling estimator may be very high
if the metamodel misses a part of the failure domain, i.e. if it considers that an area is
safe with great probability while it is not. This issue is the main drawback of Importance
Sampling, namely that the variance may be even greater than the crude Monte Carlo
one. For such algorithms, the metamodel should be very conservative, i.e. that it is very
important not to consider a part of the input space X as safe while it is not. Unfortunately
there is actually no criterion for such property. Some usual techniques for Importance
Sampling using mixtures of densities [Owen and Zhou, 2000] may be used but this will
increase again the number of required samples for this last step.

In the end, since these algorithms intend to spend few computational budget on this
final Importance Sampling estimator, there is almost no luck that a potential ill-learnt
metamodel be detected (it will not sample in areas considered as safe with great probability,
and so not visit areas which may be indeed in the failure domain). Eventually, in the
numerical examples the Importance Sampling sum p̂/p̃aug in Eq. (2.53) is always very close
to 1.

All these considerations lead us to consider that this correction of p̃aug as presented by
Dubourg [2011] and visible in Eq. (2.53) has to be manipulated with caution.

2.3.3 Subset Simulation
All the estimators presented previously are based on a crude Monte Carlo estimator, either
for p̃HC or for p̃aug and the importance sampling based correction. However, for the same
reasons as in Section 1.2, a crude Monte Carlo estimator may struggle to produce a reliable
estimate.

The problem is indeed twofold: 1) enrichment strategies based on an iid. sampling of
the input random vector may fail to discover the failure domain and to propose relevant
samples; and 2) the estimation of the selected estimator may require a too large sample
size for processing capacities or be very inaccurate. This limitation is especially severe in
an algorithm like AKMCS [Echard et al., 2011] and all its variants [Echard et al., 2013,
Fauriat and Gayton, 2014] where an initial iid. sampling is considered for the whole
algorithm as a discretised version of µX . Chevalier et al. [2014] also relied on crude Monte
Carlo sampling to find samples in the failure domain for the evaluation of the SUR criterion
and so were limited to relatively big probabilities (p ≈ 10−2).

The Subset Simulation algorithm, which lets go sequentially with a sequence of in-
termediate thresholds to the failure domain, has been used by Bourinet et al. [2011] to
address both issues simultaneously. Remember that a Subset Simulation algorithm works

53

Part I, Chapter 2 – Rare event simulation and surrogate models

typically as follows:

1. i = 0; qi = −∞; p̂ = 1;
2. sample an iid. population with distribution µX(· | g(X) > qi);
3. select a threshold qi+1 based on this population (the 1− p0 empirical quantile of the

population or the kth ordered statistic for instance);
4. if qi+1 > q, set qi+1 = q;
5. p̂ = p̂× P [g(X) > qi+1 | g(X) > qi], estimated with the current iid. population;
6. i← i+ 1;
7. if qi < q, go to step 2.

In a metamodel based Subset Simulation, it is proposed to replace step 5 with a learning
step. In this context, the iid. population of step 2 only serves the definition of the next
threshold and the algorithm is modified as follows:

5a. run a metamodel-based algorithm on the intermediate failure event F̃i+1 = {x ∈ F̃i |
g(x) > qi+1};

5b. p̂ = p̂× p̃ with p̃ the output probability of the metamodel step.

Note that in these new steps and according to step 2 the input distribution is not µX

but µX(· | X ∈ F̃i) with F̃i the previous intermediate failure domain defined with the
previous metamodel learnt on the previous threshold: Subset Simulation can be seen as
a Sequential Monte Carlo sampler modifying iteratively the input distribution to output
samples following the truncated distribution µX(· | g(X) > q).

Since the pioneering work of Deheeger [2SMART, 2008], this strategy has been applied
to the AKMCS method [AK-SS, Huang et al., 2016] and to the Bayesian approach of
rare event simulation [Bayesian Subset Simulation, Li et al., 2012, Bect et al., 2016]. In
this latter version, it is shown an improvement of several orders of magnitude against the
2SMART method, and even very recent improved version of 2SMART [Bourinet, 2016]
does not seam to achieve the same performances.

To conclude this Chapter, we emphasize that our main goal was not to present an
exhaustive list of all the metamodel-based algorithms used by practitioners to estimate a
probability of failure. The interested reader is referred to [Dubourg, 2011] or R package
mistral [Bousquet et al., 2015] for such a list. Beyond very practical parameters, which
can indeed deeply change the behaviour of an algorithm, we think that it is important
to have a general knowledge of what can be used under which hypothesis. Without
underrating the real difficulties of practical implementations, we argue that it is important
to consider algorithms which can be at least theoretically analysed and justified. To the
best of our knowledge, the Bayesian framework is the more suitable for this specification
and will be further considered in this thesis. In Chapter 5 we will show how the Poisson
process framework can lead to an improvement of the Bayesian Subset Simulation similarly
to what it did for the Subset Simulation.

54

Part II

Contribution to rare event
simulation

55

Chapter 3

Point process for rare event
simulation

3.1 Introduction
The estimation of extreme quantile or probability is a main concern in reliability analysis.
Indeed one goal of uncertainty quantification is to estimate the probability of failure of
a given system and inversely, quantile estimation helps defining guidelines to insure a
good behaviour of the system with a given probability of failure. Usually, the system is
considered as a blackbox (often a complex numerical code denoted by g in the previous
chapters) which returns a real value defining its state. According to this output, it is then
considered as working properly or not.

Formally, the problem can be written as follows: let X be a random finite- or infinite-
dimensional vector with known distribution µX and g a performance function (the computer
code for instance), one seeks for estimating p given q (or q given p) such that p =
P [g(X) > q]. The main difficulties arise from the fact that 1) the sought probability or
quantile is extreme, say p < 10−6 and 2) the computer code is very time consuming.

In Chapter 1 we have presented statistical tools to estimate such quantity. Indeed,
recall that the crude Monte Carlo estimator (see Section 1.1):

p̂MC = 1
N

N∑

i=1
1g(Xi)>q (3.1)

with (Xi)Ni=1 N iid samples with distribution µX is not an option because CV [p̂MC]2 ≈
(Np)−1, which means that one would require N = 102/p to get a coefficient of variation
of 10%. To circumvent this limitation, the Splitting method (Section 1.3) rewrites the
sought probability using the Bayes’ rule and a finite sequence of increasing thresholds
(qi)mi=0, m ≥ 1, such that q0 = −∞ and qm = q:

p = P [g(X) > qm | g(X) > qm−1]× · · · × P [g(X) > q2 | g(X) > q1] P [g(X) > q1] . (3.2)

From Eq. (3.2) the goal is then to estimate independently each conditional probability
with a crude Monte Carlo estimator. The variance of the estimator depends on the choice
of this sequence (qi)mi=0 and especially it is known that the conditional probabilities should
be all equal to minimize it (see Section 1.3.1, Eq. 1.10). A typical MS algorithm works as

57

Part II, Chapter 3 – Point process for rare event simulation

follows:

1. sample a Monte-Carlo population (Xi)Ni=1 of size N ; j = 0;

2. estimate the conditional probability P [g(X) > qj+1 | g(X) > qj];

3. resample the Xi such that g(Xi) ≤ qj+1 conditionally to be greater than qj+1 (the
other ones do not change);

4. j ← j + 1 and repeat from step 2 until j = m.

The sequence (qj)mj=1 is usually defined on-the-fly while the algorithm is running and
this is known as Adaptive Splitting (see Section 1.3.2). The sequence is built either by
fixing the conditional probabilities to be all equal to some given value p0 ∈ (0.1, 0.5)
[Subset Simulation, Au and Beck, 2001], or by using the kth order statistic [Adaptive
Multilevel Splitting (AMS), Cérou and Guyader, 2007, Cérou et al., 2012]. In the first case,
(qj)mj=1 is then a sequence of quantiles estimated with crude Monte Carlo. Since the Monte
Carlo estimator of a quantile has a bias of order 1/N (see Section 3.4.2) this bias is also
found in the Subset Simulation estimator. In the second case the sequence is determined
with a given statistic on the iid. population, precisely the kth ordered statistic. However
the conditional probability is still estimated as usual, i.e. writing ∑N

i=1 1g(Xi)>qj , which
produces an unbiased estimator for any k [Bréhier et al., 2015c]. Note that if the cdf of
Y is continuous, then P [g(Xi) > qj] = 1− k/N and so at each iteration the conditional
probability is simply estimated by 1− k/N .

The special case of the Last Particle Algorithm (k = 1) has gained a lot of attention
recently. It has the smallest variance amongst all AMS (see Section 1.3.2); especially
Guyader et al. [2011], Huber and Schott [2011] and Simonnet [2016] showed that the
random number of iterations of the algorithm follows a Poisson law when the cdf of g(X)
is continuous. However, it is totally sequential and does not allow for parallel computation.

In this chapter, we define the point process framework for rare event simulation. Indeed,
we focus on a random walk defined on the real-valued random variable Y = g(X), i.e. we
focus on the output Y instead of the input X. We first address the case where the cdf of
Y is continuous and find back the results from [Guyader et al., 2011, Huber and Schott,
2011, Simonnet, 2016], i.e. that the random walk is a Poisson process with mean measure
depending on the distribution of Y (Section 3.2). The main difference is that we do not
study a particular algorithm but rather derive general properties for this random walk.
Especially we present in Section 3.3 the Last Particle Algorithm estimator as the Minimal
Variance Unbiased Estimator (MVUE) of the exponential of a parameter of a Poisson
law with iid. replicas of the Poisson random variable. As a consequence it turns the
Last Particle Algorithm into the optimal (minimal variance) parallel Multilevel Splitting
estimator [Walter, 2015a,c].

In Section 3.4 we review the quantile estimator proposed by Guyader et al. [2011]
in the light of the point process framework and present a slightly modified version of

58

3.2. The increasing random walk

their estimator which improves its bias. Then in Section 3.5 we remove the continuity
hypothesis of the cdf and derive three unbiased estimators for the probability of exceeding
of threshold. One of them, the less robust, has also been proposed simultaneously by
Bréhier et al. [2015a] in the Splitting framework. These results are illustrated on numerical
examples in Section 3.6. All practical details on parallel implementations are postponed
to Appendix A.

3.2 The increasing random walk
Let us consider Y = g(X) ∈ R a real-valued random variable with distribution µY where g
is a deterministic function (for instance the output of a computer code) and X a random
finite- or infinite-dimensional vector with known distribution µX . In this section, we
assume that the cdf FY of Y is continuous. This hypothesis will be further removed in
Section 3.5.

Definition 3.1 (Increasing random walk). Let Y be a real-valued random variable with
continuous cdf FY , Y0 = −∞; we call the increasing random associated with Y the Markov
sequence (Yn)n such that:

∀n ∈ N, P [Yn+1 ∈ A | Y0, · · · , Yn] = P [Y ∈ A ∩ (Yn,+∞)]
P [Y ∈ (Yn,+∞)] . (3.3)

In other words (Yn)n is an increasing sequence where each element is randomly generated
conditionally greater than the previous one: Yn+1 ∼ µY (· | Y > Yn).

Remark 3.1. When Y is continuous, the random walk can alternatively be defined with a
non-strict inequality: Yn+1 ∼ µY (· | Y ≥ Yn), i.e.:

∀n ∈ N, P [Yn+1 ∈ A | Y0, · · · , Yn] = P [Y ∈ A ∩ [Yn,+∞)]
P [Y ∈ [Yn,+∞)] ,

because ∀y ∈ R,P [Y = y] = 0. This continuity hypothesis will be further investigated and
removed in Section 3.5.

Theorem 3.1. The increasing random walk associated with Y a real-valued random
variable with continuous cdf FY is indeed a Poisson process with mean measure:

∀y ∈ R, λ((−∞, y]) = − log P [Y > y] = − log
(
1− µY ((−∞, y])

)
. (3.4)

Remark 3.2. As stated by Kingman [1992, p. 12-13] there is no standard term for λ. In
this manuscript we use their convention by naming the measure mean measure and its
derivative against the Lebesgue measure, if it exists, the intensity or rate of the Poisson
process. Especially a Poisson process with mean measure λ and parameter N ≥ 1 is indeed
a Poisson process with mean measure Nλ.

59

Part II, Chapter 3 – Point process for rare event simulation

In particular, a homogeneous Poisson process is a Poisson process with constant rate 1
and so mean measure: ∀y > 0, λ([0, y]) =

∫ y
0 dt = y.

Proof. Let (Yn)n≥0 be an increasing random walk. We consider the associated sequence
(Tn)n≥0 such that ∀n ≥ 0, Tn = − log(P [Y > Yn]). Especially, note that T0 = 0 since
Y0 = −∞.

The function y ∈ R 7→ − log P [Y > y] ∈ R+ is increasing over R. Since the sequence
(Yn)n≥0 is also increasing, so is the sequence (Tn)n≥0. We now show that (Tn)n≥1 is a
homogeneous Poisson process with parameter 1, which means by definition that inter-
arrival times are independent and follow an exponential law with parameter 1. Considering
n ∈ N we have:

Tn+1 − Tn = − log(P [Y > Yn+1]) + log(P [Y > Yn])

= − log
(

P [Y > Yn+1]
P [Y > Yn]

)

= − log (P [Y > Yn+1 | Y > Yn]) .

Let Fn be the σ-algebra generated by (Tj)j≤n and Fn be the cdf of the distribution
µY (· | Y > Yn). Knowing Fn, Fn is the cdf of Yn+1 and thus Fn(Yn+1) follows a uniform
law on [0, 1]. Finally we get:

∀t ∈ R+,P [Tn+1 − Tn < t | Fn] = P [− log(1− Fn(Yn+1)) < t | Fn]
= P [Fn(Yn+1) < 1− exp(−t) | Fn]
= 1− exp(−t).

Thus the inter-arrival times are independent and follow an exponential law with parameter
1. (Tn)n≥1 is then a homogeneous Poisson process with parameter 1. Let y ∈ R and My

be the counting random variable of the number of events before y, one has:

My = card {n ≥ 1 | Yn ≤ y} = card {n ≥ 1 | Tn ≤ − log P [Y > y]} . (3.5)

Let ty = − log P [Y > y]. Since (Tn)n≥1 is a homogeneous Poisson process with parameter
1, its counting random variable a time ty > 0 follows a Poisson law with parameter ty.
Then the equality of Eq. (3.5) lets conclude:

My ∼ P (ty) = P (− log P [Y > y]) ,

which means that (Yn)n≥1 is a Poisson process with mean measure λ defined on B(R) by:

∀y ∈ R, λ((−∞, y]) = − log P [Y > y] = − log
(
1− µY ((−∞, y])

)
.

60

3.2. The increasing random walk

y

P [Y > y] = p

− log p = t

−∞ +∞

0

+∞

Y1 Y2 Y3 Y4 Y5 Y6

1 p1 p2 p3 p4 p5 p6

0 T1 T2 T3 T4 T5 T6

y

py

ty

Figure 3.1: The increasing random walk and the associated homogeneous Poisson process.

Corollary 3.1. The random number of simulations required to get a realisation of Y
above a given threshold y is 1 +My, with My ∼ P (log 1/P [Y > y]) the random number
of events before reaching y. This is to be compared with a usual iid. sampling where it
follows a geometric law with parameter P [Y > y]. In expectation, it is 1 + log 1/P [Y > y]
samples instead of 1/P [Y > y]. Since:

∀p ∈ (0, 1], 1 + log 1
p
≤ 1
p

the increasing random walk is on average always faster than the iid. sampling to get a
realisation of Y above a given threshold. This can be understood in the sense that each new
state of the random walk can be seen as a new trial to get a sample above the threshold,
but with a greater probability of success.

Remark 3.3. Simulating an increasing random walk requires to be able to generate
according to conditional distributions. Section 1.3.3 gives practical details on how to
achieve this when only a generator of the original random variable is available.

This feature is especially interesting when y is far in the tail of Y ; as a matter of fact
Figure 3.2 plots the function p ∈ (0, 1] 7→ 1/p and p ∈ (0, 1] 7→ 1− log p as well as the cdf
of the distributions P(− log 10−2) = P(4.61) and G(10−2).

Corollary 3.2. The renewal property of the Poisson process insures that:

∀y ∈ R, YMy+1 ∼ µY (· | Y > y)

with My the counting random variable of the number of events before y.

This means that given a threshold q, simulating several independent random walks
until they reach q produces an iid. population with distribution µY (· | Y > q). This
property will be later used in Chapter 5 for SUR criteria estimation (see Section 2.2.3).

Remark 3.4. Note also that generating the random walk until a given threshold y means
indeed generating the random walk for all the thresholds y0 ≤ y, i.e. generating a realisation
of all the counting random variables My0 , y0 ≤ y.

61

Part II, Chapter 3 – Point process for rare event simulation

102

105

108

10-810-510-2

p

E
[M

]

(a) Means of the Poisson (dotted blue line)
and the Geometric (solid red line) distribution
against p.

0

0.25

0.5

0.75

1

0 5 10 15 20 25
m

P
[M

≤
m

]

(b) Cumulative distribution functions of
G(10−2) (solid red line) and P(− log 10−2) + 1
(dotted blue line).

Figure 3.2: Comparison of the random number of samples M required to get a realisation
of a real-valued random variable Y with continuous cdf above of given threshold y ∈ R
using an iid. sampling or simulating an increasing random walk.

3.3 Probability estimator

3.3.1 Minimal variance unbiased estimators
In the sequel, we then consider for all y ∈ R the associated numbers py = P [Y > y] and
ty = − log py. Hence, for all y ∈ R, the counting random variable of the number of events
before y: My = card {n ≥ 1 | Yn ≤ y} follows a Poisson law with parameter ty = − log py.

Lemma 3.1. Let y ∈ R and (M i
y)Ni=1 be N iid. counting random variables at time y, the

Minimal Variance Unbiased Estimator (MVUE) of ty is:

t̂y =

N∑
i=1

M i
y

N
(3.6)

and satisfies:
var

[
t̂y
]

= ty
N
.

Furthermore this estimator is fully efficient (it reaches the Cramér-Rao bound).

Proof. On the one hand
N∑
i=1

M i
y ∼ P

(
N∑
i=1

ty

)
= P (Nty) because the sum of independent

Poisson random variables is a Poisson random variable with parameter the sum of the
parameters. Then one has:

E
[
t̂y
]

= Nty
N

= ty

and:
var

[
t̂y
]

= Nty
N2 = ty

N
.

62

3.3. Probability estimator

On the other hand the log-likelihood logL(m, ty) of the N -sample (M i
y)Ni=1 depending on

ty writes (with m = (m1, · · · ,mN) ∈ NN):

logL(m, ty) = log
(
N∏

i=1
e−ty

tmiy
mi!

)
= −Nty + log ty

N∑

i=1
mi −

N∑

i=1
log (mi!)

and so:

∂2 logL(m, ty)
∂t2y

= −

N∑
i=1

mi

t2y
.

The Cramér-Rao bound for ty is then:


−E


−

N∑
i=1

M i
y

t2y







−1

=
[
Nty
t2y

]−1

= ty
N
.

Hence t̂y achieves the Cramér-Rao bound and is the MVUE of ty.

However, e−t̂y is not an unbiased estimator for py = − log ty:

E
[
e−t̂y

]
= E


(exp−1/N)

N∑
i=1

M i
y


 = e−(Nty)(1−exp(−1/N)) = pN(1−e−1/N)

y

where we have used the moment generating function of a Poisson distribution to evaluate
the expectation. This is an illustration of the fact that given a non-constant function
h : R → R+ and real-valued unbiased estimators (t̂N)N≥1 of a given t ∈ R, there is no
algorithm yielding almost surely non-negative unbiased estimators of h(t), as recently
stated by Jacob et al. [2015].

To obtain the MVUE of py, we rely instead on the Lehmann-Scheffé theorem: given M
a sufficient and complete statistic for a given parameter py and p̂ an unbiased estimator of
py, it states that E [p̂ |M] is the MVUE of py.

Proposition 3.1 (Poisson process estimator). Let y ∈ R and (M i
y)Ni=1 be N iid. counting

random variables at time y, the Minimal Variance Unbiased Estimator (MVUE) of py = e−ty

is:

p̂y =
(

1− 1
N

) N∑
i=1

M i
y

. (3.7)

Proof. We consider the statistic M̄y =
N∑
i=1

M i
y. Hence M̄y ∼ P (Nty). From the proof of

Lemma 3.1 we know that it is sufficient. We then show that it is complete. Let h : N→ R
be a function, one has:

E
[
h(M̄y)

]
=

∞∑

m=0
h(m)e−Nty (Nty)m

m! = pNy

∞∑

m=0

h(m)
m! Nmtmy .

63

Part II, Chapter 3 – Point process for rare event simulation

Define ∀m ≥ 0, αm = Nmh(m)/m!, one finds:

∀py ∈ (0, 1], E
[
h(M̄y)

]
= 0⇒ ∀ty ∈ R+,

∞∑

m=0
αm(ty)m = 0.

Hence the power series t 7→
∞∑
m=0

αmt
m is identically null on R+ and so ∀m ∈ N, αm = 0.

This is equivalent to ∀m ∈ N, h(m) = 0, which implies:

∀py ∈ (0, 1], P
[
h(M̄y) = 0

]
= 1,

i.e. that the statistic is complete. Now consider N ≥ 2 and p̂1
y = 1M1

y=0 as an estimator
of py. It is unbiased: E

[
p̂1
y

]
= 1× P

[
M1

y = 0
]

= py. Then the Lehmann-Scheffé theorem
insures that E

[
p̂1
y | M̄y

]
is the MVUE of py: let m ≥ 0,

E
[
p̂1
y | M̄y = m

]
= P

[
M1

y = 0 | M̄y = m
]

=
P
[
M1

y = 0, M̄y = m
]

P
[
M̄y = m

]

=
P
[
M1

y = 0,
N∑
i=2

M i
y = m

]

P
[
M̄y = m

] =
P
[
N∑
i=2

M i
y = m

]

P
[
M̄y = m

] P
[
M1

y = 0
]

= pN−1
y

((N − 1) ty)m

m!
m!

pNy (Nty)m
py

E
[
p̂1
y | M̄y = m

]
=
(

1− 1
N

)m
.

Hence p̂y = (1− 1/N)M̄y is the MVUE of py.

Remark 3.5. The LPA produces an estimator of the form:

p̂LPA =
(

1− 1
N

)M

with M the random number of iterations of the algorithm. Guyader et al. [2011] and
Simonnet [2016] showed that in the case of a continuous cdf of g(X), M ∼ P(−N log py).
This means that the LPA is only a possible way to generate this MVUE. Especially, it is
totally sequential. In Appendix A we will discuss different possible parallel implementations
of this MVUE.

Proposition 3.2 (Statistical properties of the probability estimator).

p̂y
a.s−−−→

N→∞
py. (3.8)

var [p̂y] = p2
y

(
p−1/N
y − 1

)
. (3.9)

Proof. The almost sure convergence comes from the fact that M̄y/N almost surely converges
toward − log py thanks to the Strong Law of Large Numbers. On the other hand the

64

3.3. Probability estimator

expression of the variance is calculated with the moment generating function of a Poisson
random variable.

Figure 3.3: N = 10 simulations of a random walk associated with a standard normal
Gaussian random variable. The statistic M̄2 = 40 and so the estimated probability is
p̂2 = (1− 1/10)40 ≈ 1.48× 10−2 with CV [p̂y] ≈ 0.43. Animated figure online.

Corollary 3.3. Remark 3.4 and Proposition 3.2 let have a Glivenko-Cantelli like result:

sup
y0≤y
|FN(y0)− FY (y0)| a.s.−−−→

N→∞
0 (3.10)

with FN(y0) = 1−
(

1− 1
N

)M̄y0
and M̄y0 the sum of N iid. counting random variables at

state y0.

Proof. The proof relies on the same argument as the one of the Glivenko-Cantelli theorem.
Let us consider that the increasing random walks have been generated until a given y ∈ R
such that 1− FY (y) = P [Y > y] = p > 0. We show that:

sup
y0≤y
|FN(y0)− FY (y0)| a.s−−−→

N→∞
0.

Let m ≥ 1 and define the sequence (yi,m)mi=1 such that ∀i ∈ J1,mK, yi,m = GY (i
m

(1− p))
with GY the generalised inverse of FY , defined on (0, 1) by:

GY (u) = inf{y ∈ R | FY (y) ≥ u}.

We set y0,m = yL ∈ R̄ the left endpoint of FY such that FY (y0,m) = 0 and P [FN(y0,m) = 0] =
1. Since FY is supposed to be continuous, one also has: ∀i ∈ J1,mK, FY (yi,m) = (1−p)i/m.

65

Part II, Chapter 3 – Point process for rare event simulation

For all y0 ∈ (yL, y], there exists i ∈ J0,m − 1K such that yi,m < y0 ≤ yi+1,m. Let
(Ω,F ,P) be the underlying probability space and ω ∈ Ω. Since the functions FN (·, ω) and
FY are increasing, one has:

FN(yi,m, ω) ≤ FN(y0, ω) ≤ FN(yi+1,m, ω)
FY (yi,m) ≤ FY (y0) ≤ FY (yi+1,m)

which gives the following bounds:

FN(yi,m, ω)− FY (yi+1,m) ≤ FN(y0, ω)− FY (y0) ≤ FN(yi+1,m, ω)− FY (yi,m)

FN(yi,m, ω)− FY (yi,m)− 1− p
m
≤ FN(y0, ω)− FY (y0) ≤ FN(yi+1,m, ω)− FY (yi+1,m) + 1− p

m
.

Eventually this means:

sup
y0≤y
|FN(y0, ω)− FY (y0)| ≤ sup

1≤i≤m
|FN(yi,m, ω)− FY (yi,m)|+ 1− p

m
.

Let: ∀y0 ≤ y, Ay0 =
{
ω ∈ Ω | lim

N
FN(y0, ω) = FY (y0)

}
and Ωm = ∩mi=1Ayi,m . For all

ω ∈ Ωm:
lim sup
N→∞

sup
y0≤y
|FN(y, ω)− FY (y)| ≤ 1− p

m
.

The almost sure convergence of the estimator gives that the sets (Ayi,m)mi=1 are of probability
1 and so is Ωm as a finite intersection of such sets. Finally Ω̄ = ∩m≥1Ωm is of probability 1
as a countable intersection of such sets and:

∀ω ∈ Ω̄, lim sup
N→∞

sup
y0≤y
|FN(y0, ω)− FY (y0)| ≤ inf

m≥1

1− p
m

= 0

which concludes the proof.

In other words, generating an estimator of py for a given y ∈ R means indeed generating
an estimator of the whole cdf of Y until this threshold y, similarly to the empirial cdf
built from an iid. Monte Carlo sampling.

3.3.2 Efficiency of the estimator

Thanks to Lehmann-Scheffé theorem, we have been able to derive the MVUE of py.
However it does not achieve the Cramér-Rao bound: with similar calculations as in the
proof of Lemma 3.1 but making the derivative of the log-likelihood against py instead of ty,
we find that the bound is: −p2

y log py/N . This bound is at least asymptotically achieved
for sufficiently large N :

var [p̂y] = p2
y

(
p−1/N
y − 1

)
=
−p2

y log py
N

+ o
(1
N

)
. (3.11)

66

3.3. Probability estimator

We also recall the specific criteria defined in Section 1.5 for rare event estimators [Rubino
et al., 2009]. An estimator is said to have a Bounded Relative Moment of order k ≥ 1
(BRMk) if:

lim sup
py→0

E
[
p̂ky
]

pky
<∞ (3.12)

and a Logarithmic Efficiency of order k ≥ 1 (LEk) if:

log E
[
p̂ky
]

k log py
−−−→
py→0

1. (3.13)

Let k ≥ 1, we have:

E
[
p̂ky
]

pky
= p

N(1−(1−1/N)k)−k
y (3.14)

log E
[
p̂ky
]

k log py
= N

k

[
1−

(
1− 1

N

)k]
= 1− k − 1

2N + o
(1
N

)
. (3.15)

Hence for any k ≥ 2, Eq. (3.12) is not satisfied because N(1− (1/N)k)− k < 0. On the
other hand Eq. (3.13) is asymptotically achieved (large N) for any k ≥ 1 with Eq. (3.15)
not depending on py.

3.3.3 Confidence intervals

The distribution of the discrete random variable p̂y is fully determined through a Poisson
distribution with parameter −N log py. Furthermore the Poisson distribution is known
to be well approximated with a Gaussian random variable as soon as its parameter is
greater than 5 to 10. Hence even for small N we fall into the range of validity of this
approximation: for instance considering N ≥ 10 and p ≤ 10−1 leads to −N log p ≥ 23.

This means that p̂y approximately follows a log-normal distribution:

log p̂y ∼ N (µ, σ2) with





µ = −N log py log
(

1− 1
N

)
= log py +O

(1
N

)

σ2 = −N log py
(

log
(

1− 1
N

))2
= − log py

N
+O

(1
N2

)

(3.16)
so that one can build approximate confidence intervals based on the standard Gaussian
distribution.

Proposition 3.3. Given α ∈ (0, 1) and Z1−α/2 the quantile of order 1−α/2 of the standard
normal distribution: P

[
−Z1−α/2 < N (0, 1) < Z1−α/2

]
= 1− α, one has:

lim inf
N→∞

P
[√
N |py − p̂y| < Z1−α/2p̂y

√
− log p̂y

]
≥ 1− α.

67

Part II, Chapter 3 – Point process for rare event simulation

Proof. Since M̄ is the sum of iid. Poisson random variables, the Central Limit Theorem
gives: √

N

− log py

(
M̄

N
− (− log py)

)
L−−−→

N→∞
N (0, 1).

Let t̂y = − log p̂y = −M̄ log (1− 1/N) and ty = − log py, the above equation rewrites:
√

N

− log py

(
t̂y

−N log (1− 1/N) − ty
)

L−−−→
N→∞

N (0, 1)
√

N

− log py

(
t̂y − ty − t̂y

(
1− 1
−N log(1− 1/N)

))
L−−−→

N→∞
N (0, 1).

On the one hand 1− 1
−N log(1− 1/N) = 1/(2N) + o(1/N) and t̂y converges almost surely

to ty. This gives:
√

N

− log py
t̂y

(
1− 1
−N log(1− 1/N)

)
a.s.−−−→

N→∞
0.

Then Slutsky’s theorem gives that:
√

N

− log py

(
t̂y − ty

) L−−−→
N→∞

N (0, 1).

Now recall that log p̂y converges almost surely toward log py, Slutsky’s theorem eventually
gives: √

N

− log p̂y

(
t̂y − ty

) L−−−→
N→∞

N (0, 1).

Denote by Z1−α/2 the quantile of order 1− α/2 of the standard normal distribution, one
gets:

P

 |t̂y − ty|√
− log p̂y

√
N < Z1−α/2


 −−−→

N→∞
1− α

P

exp


−Z1−α/2

√
− log p̂y
N


 <

py
p̂y

< exp

Z1−α/2

√
− log p̂y
N




 −−−→

N→∞
1− α.

Finally the asymptotic expansion of the exponential lets conclude the proof.

In this section we developed the point process framework for rare event simulation.
In this framework, the Last Particle Algorithm [Guyader et al., 2011, Simonnet, 2016]
appears only as a particular sequential implementation of the MVUE defined in Eq. (3.7),
it is the MVUE of the exponential of a Poisson parameter with iid. replicas of such
Poisson random variables. This more general iid. representation paves the way for parallel
implementation of the estimator (see Appendix A). Since the LPA estimator is optimal
(minimal variance against number of generated samples) amongst all Adaptive Splitting

68

3.4. Quantile estimator

estimators (see Section 1.3.2), this means that we have enabled the parallel implementation
of the optimal Multilevel Splitting algorithm.

Furthermore the point process framework lets us show a Glivenko-Cantelli like theorem:
like with a crude Monte Carlo estimator, one not only produces an estimator of the
sought probability but of the whole cdf of Y = g(X). In other words, one could say
that the optimal splitting does not make any splitting anymore. The Poisson process
framework appears as a true counterpart of the crude Monte Carlo estimator with a similar
behaviour but a coefficient log 1/py instead of 1/py in all the considered formulas. Table
3.1 summarises these properties.

crude Monte Carlo Poisson process
Sampling: N iid. replicas of X ∼ µX My ∼ P (− log py)

Statistic M̄ =
N∑
i=1

1g(Xi)>y M̄ =
N∑
i=1

M i
y

Estimator M̄/N (1− 1/N)M̄

Mean py py

Variance σ2 py(1− py)
N

p2
y(p−1/N

y − 1)

Asymptotic variance limN→∞ σ2N py(1− py) −p2
y log py

Squared coef. of variation 1− py
Npy

+ o
(1
N

) 1
N

log 1
py

+ o
(1
N

)

Width of conf. interval at (1− α)% 2Z1−α/2 σ 2Z1−α/2 σ

Table 3.1: Summary of the properties of the crude Monte Carlo and the Poisson process
estimators.

In the next section, we go one step further with the development of this similarity by
defining a quantile estimator based on the increasing random walk. Guyader et al. [2011]
indeed already proposed a quantile estimator based on the Last Particle Algorithm. Apart
from its parallelisation, we will show that the Poisson process framework also slightly
modifies this estimator, resulting in simplified bounds on the bias.

3.4 Quantile estimator

3.4.1 Description of the estimator

Recall that we were interested in estimating p = P [g(X) > q] for a given q ∈ R with g(X)
a real-valued random variable with continuous cdf , we now assume that one instead wants
to estimate q for a given p:

q = inf{y ∈ R | P [g(X) > y] ≤ p}.

69

Part II, Chapter 3 – Point process for rare event simulation

Let us first consider (Tm)m≥0 a homogeneous Poisson process with parameter N ≥ 1
(T0 = 0) and denote by M̄q the counting random variables at time t = − log p > 0. We
have M̄q ∼ P(−N log p) = P(Nt).

Lemma 3.2 (Laws of random variables TM̄q
and TM̄q+1). Let us denote by FM̄q

and FM̄q+1

the cdf associated to TM̄q
and TM̄q+1 respectively. The following result holds:

∀(α, β) ∈ R2
+,P

[
(TM̄q+1 − t > α/N) ∩ (t− TM̄q

≥ β/N)
]

= e−αe−β 1[0,Nt)(β). (3.17)

Proof. Given (α, β) ∈ R2
+, we write ∀k ∈ N,∆k = {(Tk+1 − t > α/N) ∩ (t− Tk ≥ β/N)}.

We have:

P
[
∆M̄q

]
=
∞∑

k=0
P
[
∆M̄q

∩ {M̄q = k}
]
.

Noticing here that {M̄q = k} = {Tk ≤ t < Tk+1} we have:

P
[
∆M̄q

]
=
∞∑

k=0
P [∆k] .

From standard results on Poisson processes, we have the joint density of (Tk, Tk+1):

∀k ∈ N∗, f(tk, tk+1) = Nk+1e−Ntk+1tk−1
k /(k − 1)!10<tk<tk+1 .

Then we get:

∀k ∈ N,P [∆k] = (N(t− β/N))k
k! e−Nt−α 1[0,t)

(
β

N

)
1[0,+∞)(α)

and so the result announced:

P
[
(TM̄q+1 − t > α/N) ∩ (t− TM̄q

≥ β/N)
]

= e−α1[0;+∞)(α) e−β1[0;Nt)(β).

Note that, for any N and t, the distribution of (NTM̄q
, NTM̄q+1) depends only of Nt.

Corollary 3.4. The center of the interval [TM̄q
;TM̄q+1] converges toward a random variable

centred in t with symmetric pdf, i.e.:

N

(
TM̄q

+ TM̄q+1

2 − t
)

L−−−−→
Nt→∞

Z (3.18)

with Z a random variable with pdf fZ(z) = e−2|z|.

70

3.4. Quantile estimator

Proof. From the joint probability distribution of TM̄q
and TM̄q+1 we have:

∀(α, β) ∈ R2
+,P

[
(TM̄q+1 − t > α/N) ∩ (t− TM̄q

≥ β/N)
] L−−−−→
Nt→∞

e−α e−β

i.e.:
N(TM̄q+1 − t, t− TM̄q

) −−−−→
Nt→∞

(Z1, Z2)

with Z1 and Z2 iid. random variables with Exponential distribution E(1). The difference
between the center of the interval and t is thus the difference between two Exponential
random variables with parameter 2, which gives the result.

Lemma 3.2 and Corollary 3.4 show that a homogeneous Poisson process is such that
for any given t > 0, the first events before and after t form a random interval centred at t.
Going back to the increasing random walk, it suggests to define the following quantity of
interest:

q̃ =
YM̄q

+ YM̄q+1

2
with (Ym)m the superposed process of N iid. random walks, i.e. a Poisson process with
mean measure: ∀y ∈ R, λ((−∞, y]) = −N log P [Y > y]. In other words (Ym)m is such
that ∀m ≥ 0, Tm = − log P [Y > Ym]: it is the merged and sorted sequence of the events
of N iid. increasing random walks.

Denote by F̄Y
−1 the complementary quantile function of Y = g(X), i.e. the generalised

inverse of its complementary cdf F̄Y [see for example Embrechts et al., 1997, Resnick,
2013]:

F̄Y
−1(p) = inf{y ∈ R | P [Y > y] ≤ p}

one has: ∀m ≥ 0, Ym = F̄Y
−1(e−Tm). By assuming that Y = g(X) has a pdf fY continuous

and strictly positive at q, we can make the following Taylor expansion around t = − log p:

YM̄q
= q +

(
TM̄q
− t

) p

fY (q) + oP
(
TM̄q
− t

)

YM̄q+1 = q +
(
TM̄q+1 − t

) p

fY (q) + oP
(
TM̄q+1 − t

)
.

Corollary 3.4 lets have the convergence in distribution of q̃:

N(q̃ − q) L−−−→
N→∞

p

fY (q)Z,

where Z is a random variable with pdf fZ(z) = e−2|z|. Unfortunately we cannot observe
M̄q: in general there is no information on when the estimated quantile is crossed by the
random walk. However we know that M̄q

L∼ P(−N log p); writing mq = b−N log pc, we
then choose as an estimator for q:

q̂ = Ymq + Ymq+1

2 . (3.19)

71

Part II, Chapter 3 – Point process for rare event simulation

3.4.2 Statistical analysis of the estimator

Let N ≥ 1 be the total number of random walks and mq = b−N log pc. We first present
some asymptotic results for an estimator Ymq+k with a given k ∈ Z as N → +∞. Then
we study the property of a linear combination of Ymq+k around mq. From now on, let us
suppose that g(X) has cdf FY and pdf fY continuous at q.

Proposition 3.4 (Central Limit Theorem). If fY (q) 6= 0, then:

√
N
(
Ymq+k − q

) L−−−→
N→∞

N
(

0, −p
2 log p

fY (q)2

)
. (3.20)

Proof. This proof comes mainly from [Guyader et al., 2011]. There exists N0 ∈ N | ∀N ≥
N0, mq + k > 0. Let N ≥ N0, we have Ymq+k = F̄Y

−1(eTmq+k) where Tmq+k ∼ Γmq+k/N
with Γmq+k a Gamma random variable with parameter mq + k. From the definition of
mq = b−N log pc we get:

mq + k

N
−−−→
N→∞

− log p

which lets us rewrite the Central Limit Theorem for the Gamma random variable as
follows: √

N
Tmq+k − (− log p)√− log p

L−−−→
N→∞

N (0, 1).

One eventually concludes by making a Taylor expansion of y ∈ R 7→ − log P [Y > y]
around q:

Tmq+k − (− log p) = (Ymq+k − q)fY (q)/p+ oP (Ymq+k − q).

Then: √
N(Ymq+k − q) L−−−→

N→∞
N
(

0, −p
2 log p

fY (q)2

)
.

Proposition 3.5 (Bounds on bias). If fY continuously differentiable and positive at q,
we get the following boundaries for the bias:

E
[
Ymq+k

]
− q ≥ p

NfY (q)

(
log p

2

(
1 + f ′Y (q)p

fY (q)2

)
+ k − 1

)
+ o

(1
N

)

E
[
Ymq+k

]
− q ≤ p

NfY (q)

(
log p

2

(
1 + f ′Y (q)p

fY (q)2

)
+ k

)
+ o

(1
N

)
.

(3.21)

Proof. Let us write the Taylor expansion of Ymq+k around t = − log p = − log F̄Y (q):

Ymq+k = F̄Y
−1(e−Tmq+k) = q + p

fY (q)(Tmq+k − t)

+ (Tmq+k − t)2

2

(
− p

fY (q)

)(
1 + pf ′Y (q)

fY (q)2

)
+ oP

(
(Tmq+k − t)2

)
.

72

3.4. Quantile estimator

We have:

E
[
Tmq+k − t

]
= mq + k

N
− t = 1

N
(mq −Nt+ k) ∈

(
k − 1
N

,
k

N

]

and:

E
[
(Tmq+k − t)2

]
= var

[
Tmq+k

]
+ (mq + k

N
− t)2 = mq

N2 + k

N2 + 1
N2 (mq −Nt+ k)2

E
[
(Tmq+k − t)2

]
∈ t

N
+ k

N2 (k − 1, k + 1] ,

which concludes the proof.

Proposition 3.6 (Confidence interval). Writing Z1−α/2 the (1−α/2) quantile of a standard
Gaussian distribution, m− = bmq −Z1−α/2

√
mqc and m+ = dmq +Z1−α/2

√
mqe, we have:

P
[
q ∈ [Ym− , Ym+]

]
−−−→
N→∞

1− α. (3.22)

Proof. Considering the approximation of a Poisson distribution by a Normal distribution:
Mq ∼ N (mq,mq) and writing Z1−α/2 the 1− α/2 quantile of a standard Gaussian law:

P
[
Mq ∈ [mq − Z1−α/2

√
mq,mq + Z1−α/2

√
mq]

]
= 1− α.

We conclude by noticing that the sequence (qi)i is strictly increasing.

Hence it is possible to produce a confidence interval for q without estimating the pdf
of g(X) in contrast with a crude Monte Carlo estimation.

Proposition 3.7 (Multidimensional Central Limit Theorem). Let us now consider the
vector (Ymq , Ymq+1, . . . , Ymq+k) with k ∈ Z | k ≥ −mq + 1. If fY (q) 6= 0, we can write the
following multidimensional central limit theorem:

√
N







Ymt
...

Ymt+k


− q




1
...
1







L−−−→
N→∞

N







0
...
0


 ,
−p2 log p
fY (q)2




1 . . . 1
...
1 . . . 1





 . (3.23)

Proof. The (Tmq+k)k are the times of a homogeneous Poisson process with parameter N
so that we know their joint probability distribution and we get:

∀k ∈ Z | mq + k > 0, cov
[
Tmq , Tmq+k

]
= mq

N2 .

Let us now define φ : t 7→= F̄Y
−1(e−t) and calculate the covariance matrix between the

(Ymt+k)k. Since Ymq+k = q + (Tmq+k − t)φ′(t) + o(Tmq+k − t) and φ′(t) = p/fY (q), we find:

cov
[
Ymq , Ymq+k

]
=
(

p

fY (q)

)2
mq

N2 + o
(1
N

)

73

Part II, Chapter 3 – Point process for rare event simulation

from which it comes:
N cov

[
Ymq , Ymq+k

]
−−−→
N→∞

−p2 log p
fY (q)2

which concludes the proof.

Proposition 3.8. Assuming that fY is twice continuously differentiable and fY (q) 6= 0,
the estimator q̂ = Ymq + Ymq+1

2 introduced in Eq. (3.19) has the following properties:

√
N (q̂ − q) L−−−→

N→∞
N
(

0, −p
2 log p

fY (q)2

)
(3.24)

and:

E [q̂]− q ≥ p

2NfY (q)

(
log p

(
1 + f ′Y (q)p

fY (q)2

)
− 1

)
+ o

(1
N

)

E [q̂]− q ≤ p

2NfY (q)

(
log p

(
1 + f ′Y (q)p

fY (q)2

)
+ 1

)
+ o

(1
N

)
.

(3.25)

Remark 3.6. For von Mises distributions [see Embrechts et al., 1997, Section 3.3.3] one
has:

f ′Y (q)p
fY (q)2 −−−→q→∞ −1.

For instance for Weibull distributions, i.e. distributions with cdf FY (y) = e−λy
k , y ≥ 0,

λ > 0 and k > 0, one has

log p
(

1 + f ′Y (q)p
fY (q)2

)
= 1− 1

k

so that the bounds on bias simplify as follow:

− 1
2k

p

NfY (q) ≤ E [q̂]− q ≤
(

1− 1
2k

)
p

NfY (q) . (3.26)

Eventually, it is centred for k = 1.

Remark 3.7. Guyader et al. [2011] defined the quantile estimator by inverting Eq. (3.7),
i.e.:

q̂LPA = YmLPA (3.27)

with mLPA = dlog p/ log (1− 1/N)e. While this does not change the convergence in distri-
bution, its modifies the bounds on the bias. As a matter of fact, with the same assumptions
he got:

E [q̂]− q ≥ p

NfY (q)

(
log p

(
1 + f ′Y (q)p

2fY (q)2

)
+ f ′Y (q)p
fY (q)2

)
+ o

(1
N

)

E [q̂]− q ≤ p

NfY (q)

(
log p

(
1 + f ′Y (q)p

2fY (q)2

)
+ 1− f ′Y (q)p

fY (q)2

)
+ o

(1
N

)
.

(3.28)

74

3.5. Discontinuous random variables

assuming f ′(q) < 0. Especially these bounds change with the sign of f ′(q) and the interval
is wider than the one given in Eq. (3.25).

3.5 Discontinuous random variables
All the previous results assume that the cdf of Y = g(X) is continuous. This if often the
case in the literature and little is known about the impact of using splitting strategies if
this assumption does not hold. Recall that X is a random finite- or infinite-dimensional
vector with known distribution µX and g a real-valued measurable performance function.
Y can be discontinuous if for example there is some threshold effect in g and/or if X
is discrete or mixed discrete/continuous [Cérou et al., 2011, Rubinstein, 2009b, 2010,
Rubinstein et al., 2012]. Also if X is a random path, the discretisation of the solution
of a Stochastic Differential Equation (SDE) can lead to some accumulations points (see
Section 3.6 below).

Recently, Simonnet [2016] showed that in the case of the Last Particle Algorithm the
random number of iterations is indeed a mixture of independent Poisson and negative
binomial laws while in the continuous case, it is only a Poisson law. Unfortunately he could
not derive a general unbiased estimator from this result [Simonnet, 2016, Theorems 4 and 5].
The main problem comes from the fact that the equality: ∀y ∈ R, P [Y > y] = P [Y ≥ y]
does not hold any more (see Remark 3.1). Rubinstein [2009b] already noticed that one
should pay attention to the fact that the root qi of P [g(X) ≥ qi | g(X) ≥ qi−1] = p0 may
not be unique [Rubinstein, 2009b, Remark 6.1], [Botev and Kroese, 2008, Remark 2.6]. He
then derived some guidelines for an appropriate adaptive choice of the (qi)i for Splitting
methods (see Section 1.3.2) in this case but concludes that the algorithm can eventually
fail to estimate the sought probability [it stops at an intermediate level, see Rubinstein,
2009b, Remark 6.3] or returns 0 [Amrein and Künsch, 2011]).

Finally, Cérou et al. [2011] suggested to use for the Boolean SATisfiability Problem (SAT
problem) an auxiliary continuous random variable Ỹ such that P

[
Ỹ > q

]
= P [g(X) > q]

and showed practical improvement. This idea of using an auxiliary continuous random
variable is also used by Huber and Schott [2011] for the Ising model. Eventually there are
always case specific transformations. Skilling [2006] also mentions this issue and proposes
to add a uniform random variable on a tiny interval but one lacks of justifications and
clear guidelines and consequences.

Following the random walk framework developed in Section 3.2 the goal of this
section is to fill this gap by providing both the distribution of the number of iterations
(the distribution of the counting random variables) and the Minimal Variance Unbiased
Estimators (MVUE) in the two alternative definitions of the increasing random walk (see
Remark 3.1): the one with strict inequality and the one with non-strict inequality. While
they are the same with probability 1 if Y = g(X) is continuous, they may differ if it is
not. Especially Bréhier et al. [2015a] recently derive an unbiased estimator for the strict

75

Part II, Chapter 3 – Point process for rare event simulation

inequality case in the usual AMS framework.
However the distributions of these estimators are less simple than in the continuous

case. In this scope we also suggest a third estimator based on the increasing random walk
with non-strict inequality which has the same statistical properties as in the continuous
case, i.e. with or without discontinuities. Practically speaking it is not necessary to know
in advance if Y is actually continuous or not and in this latter case, the three estimators
become the same.

3.5.1 The increasing random walk for discontinuous random
variables

From now on, we assume that Y is a real-valued random variable, continuous or not. We
extend the definition of the increasing random walk (Definition 3.1) as follows:

Definition 3.2 (Increasing random walk with non-strict inequality). Let Y ≥0 = 0; the
increasing random walk with non-strict inequality associated with Y is the Markov sequence
(Y ≥n)n such that:

∀n ∈ N, P
[
Y ≥n+1 ∈ A | Y ≥0 , · · · , Y ≥n

]
=

P
[
Y ∈ A ∩ [Y ≥n ,+∞)

]

P [Y ∈ [Y ≥n ,+∞)] . (3.29)

Definition 3.3 (Increasing random walk with strict inequality). Let Y >
0 = 0; the increasing

random walk with strict inequality associated with Y is the Markov sequence (Y >
n)n such

that:
∀n ∈ N, P

[
Y >
n+1 ∈ A | Y >

0 , · · · , Y >
n

]
= P [Y ∈ A ∩ (Y >

n ,+∞)]
P [Y ∈ (Y >

n ,+∞)] . (3.30)

In other words (Y ≥n)n is an increasing sequence where each element is randomly
generated conditionally greater or equal than the previous one: Y ≥n+1 ∼ µY (· | Y ≥
Y ≥n) while (Y >

n)n is an increasing sequence where each element is randomly generated
conditionally strictly greater than the previous one : Y >

n+1 ∼ µY (· | Y > Y >
n). In the

sequel, the superscripts > and ≥ will be used to denote quantities based on the increasing
random walk with strict (resp. non-strict) inequality.

Let D be the set of the atoms of Y . According to Froda’s theorem [Froda, 1929] it is
countable. As in Section 3.2 we consider for all y ∈ R the counting random variable at
time y ∈ R: M>

y = card{n ≥ 1 | Y >
n ≤ y} and M≥

y = card{n ≥ 1 | Y ≥n ≤ y}. The next
two propositions aim at giving the law of M>

y and M≥
y . In both Propositions 3.9 and 3.10,

we consider y ∈ R | py = P [Y > y] > 0, Dy = D ∩ (−∞, y] and define:

∀d ∈ D, ∆d = P [Y > d]
P [Y ≥ d] . (3.31)

76

3.5. Discontinuous random variables

Proposition 3.9 (Law of the counting random variable for the non-strict random walk).
M≥

y is a mixture of independent Poisson and Geometric random variables such that:

M≥
y ∼ P


− log py∏

d∈Dy
∆d


⊕

∑

d∈Dy
G (∆d) (3.32)

with G a Geometric law counting the number of failures before success. In other words,
M≥

y is the sum of independent random variables, the first one being a Poisson random
variable with parameter − log py/

∏
d∈Dy ∆d and the other ones independent Geometric

random variables with parameter ∆d, d ∈ Dy respectively.

Proof. The distribution of M≥
y has already been proved by Simonnet [2016] assuming

that cardDy < ∞. We extend this result to the possible infinite countable number of
discontinuities.

Let Sn = {y ∈ R | 0 < P [Y = y] < 1/n} be the set of the jump points of FY with jump
amplitudes smaller than 1/n and Y (n) = Y 1Y /∈Sn . Y (n) has a finite number of jump points
and accumulates the (possibly infinite) number of jump points d ∈ D | P [Y = d] < 1/n
at 0. Since it has a finite number of discontinuities, the law of its associated counting
random variables is known.

Furthermore it verifies:

∀y ∈ R, P
[
Y (n) ≤ y

]
= P [Y ≤ y] + 1y≥0

∑

d∈Sn
d>y

P [Y = d]− 1y<0
∑

d∈Sn
d≤y

P [Y = d] .

Hence Y (n) L−−−→
n→∞ Y , which implies M (n)

y
L−−−→

n→∞ M≥
y with M (n)

y the counting random
variable at state y associated with an increasing random walk with non-strict inequality
on Y (n).

Moreover, one has: ∀y ∈ R, ∀n ≥ 1, M (n)
y ∼ P


− log

P
[
Y (n) > x

]

∏
d∈Dy\Sn

∆d


+ ∑

d∈Dy\Sn
G (∆d).

Finally, this gives:

M≥
y ∼ P


− log P [Y > y]

∏
d∈Dy

∆d


⊕

∑

d∈Dy
G (∆d) .

We also show that the first and second order moments of M≥
y remain finite even when

card(Dy) =∞. One has:

0 ≤
∑

d∈Dy

(1
∆d

− 1
)

=
∑

d∈Dy

P [Y = d]
P [Y > d] ≤

1
P [Y > y]

∑

d∈Dy
P [Y = d] ≤ 1− py

py
,

77

Part II, Chapter 3 – Point process for rare event simulation

and:

1 ≥
∏

d∈Dy
∆d ≥

∏

d∈Dy
e
−
(

1
∆d
−1
)
≥ e

−
∑
d∈Dy

(
1

∆D
−1
)

≥ e
− 1−py

py > 0.

All together, theses inequalities give the result:

E
[
M≥

y

]
= − log py∏

d∈Dy
∆ +

∑

d∈Dy

(1
∆d

− 1
)
≤ − log py + 1− py

py

var
[
M≥

y

]
= − log py∏

d∈Dy
∆ +

∑

d∈Dy

1
∆d

(1
∆d

− 1
)
≤ − log py + 1− py

p2
y

.

It is part of the proof above that the distribution of M≥
y is well defined with finite

mean and variance even when card(Dy) = ∞, extending the result of Simonnet [2016]
who proved it with a combinatorial analysis assuming that card(D) <∞. Indeed it can
be understood using the renewal property of a Poisson process: the number of events
corresponding to the continuous part, i.e. events Yn /∈ D, follows a Poisson law with
parameter − log py −

∑
d(− log ∆d) = − log(py/

∏
d ∆d). On the other hand each jump

point leads to a random number of iterations following a Geometric law with probability
of success P [Y > d] /P [Y ≥ d] = ∆d.

Proposition 3.10 (Law of the counting random variable for the strict random walk).
M>

y is a mixture of independent Poisson and Bernoulli random variables such that:

M>
y ∼ P


− log py∏

d∈Dy
∆d


⊕

∑

d∈Dy
B (1−∆d) (3.33)

with B a Bernoulli distribution. M>
y is then the sum of independent random variables, the

first one being a Poisson random variable with parameter − log py/
∏
d∈Dy ∆d and the other

ones independent Bernoulli random variables with parameter 1−∆d, d ∈ Dy respectively.

Proof. Using the renewal property of the Poisson process the number of events in the
continuous part will be the same as the one in the non-strict case. Indeed the only
difference with the non-strict random walk comes from the behaviour of the random walk
when Yn ∈ Dy. In this latter case, while the non-strict inequality repeats the trial until
success, the strict inequality do it only once. Hence the Geometric law is replaced by a
Bernoulli one.

Since the Geometric law counts the number of failures while the Bernoulli one gives 1
in case of success, the parameter is the opposite. Furthermore, both Eqs. (3.32) and (3.33)

78

3.5. Discontinuous random variables

are equal when D = ∅, i.e. when Y is continuous. In this latter case, one finds back the
pure Poisson distribution M>

y ∼M≥
y ∼My ∼ P(− log py).

3.5.2 Probability estimators

As noticed by Simonnet [2016], formulas (3.32) and (3.33) are not very useful to derive
an unbiased probability estimator. However we do not generate only iid. copies of the
counting random variables but the random walks themselves. Hence if one can afford
storing all the states of each random walk, then it is possible to build a MVUE in both
cases.

Preliminary results

Lemma 3.3 (MVUE for a Geometric distribution). Let G ∼ G(p) be a Geometric random
variable counting the number of failures before success with probability of success p and
(Gi)Ni=1 N iid. copies of G, then the minimal variance unbiased estimator for p is:

p̂ = N − 1

N − 1 +
N∑
i=1

Gi

. (3.34)

Proof. One is going to use Lehmann-Scheffé theorem with the statistic T =
N∑
i=1

Gi. As
the sum of N independent Geometric random variables with parameter p, T follows a
Negative Binomial law: ∀t ∈ N, P [T = t] =

(
N+t−1

t

)
pN(1− p)t. T is sufficient:

L(g1, · · · , gN , p) =
N∏

i=1
P [Gi = gi] = (1− p)

N∑
i=1

gi

pN = (1− p)tpN .

T is also complete: let φ : N→ R be a function, one has:

∀p ∈ (0, 1), E [φ(T)] = 0⇒ ∀p ∈ (0, 1), pN
∞∑

t=0

(
t+N − 1

t

)
φ(t)(1− p)t = 0

⇒ ∀θ ∈ (0, 1),
∞∑

t=0
αtθ

t

with αt =
(
t+N−1

t

)
φ(t) and θ = 1− p. Furthermore p = 1 i.e. θ = 0 gives φ(0) = 0 and

θ = 1, i.e. p = 0 gives P [T <∞] = 0. Hence the power series θ 7→ ∑
αtθ

t is identically null
on its radius of convergence [0, 1) and so ∀t ∈ N, αt = 0, which means ∀t ∈ N, φ(t) = 0
and T is complete.

We now consider the estimator R = 1
N

N∑
i=1

1Gi=0. R is unbiased because E [1Gi=0] =
P [G1 = 0] = p. Then the Lehmann-Scheffé theorem states that E [R | T] is the MVUE of

79

Part II, Chapter 3 – Point process for rare event simulation

p. This gives:

E [R | T = t] = 1
N

N∑

i=1
E
[
1Gi=0 |

N∑

i=1
Gi = t

]
= P

[
G1 = 0 |

N∑

i=1
Gi = t

]

=
P
[
G1 = 0,

N∑
i=2

Gi = t

]

P
[
N∑
i=1

Gi = t

] = P [G1 = 0]

(
t+N−2

t

)
pN−1(1− p)t

(
t+N−1

t

)
pN(1− p)t

E [R | T = t] = N − 1
N − 1 + t

.

Hence, p̂ = E [R | T] = (N − 1)/(N − 1 + T) is the MVUE of p.

Lemma 3.4 (MVUE for a Bernoulli distribution). Let B ∼ B(1 − p) be a Bernoulli
random variable with probability of failure p and (Bi)Ni=1 N iid. copies of B, then the
minimal variance unbiased estimator for p is:

p̂ = 1−

N∑
i=1

Bi

N
. (3.35)

Definition 3.4 (Run-length encoding). Let v = (v1, · · · , vm) ∈ Rm, m ≥ 1, be a vector
such that ∀i ∈ J1,m− 1K, vi ≤ vi+1. We call the run-length encoding of v the vector r of
the lengths of runs of equal values in v.

In other words, the run-length encoding counts for any non decreasing sequence the
number of times each value is repeated: for example if v = (0.5, 2.1, 2.1, 2.1, π) then
r = (1, 3, 1). Especially, if Y is continuous the RLE of the states of a realisation of the
increasing random walk (Y1, · · · , Ym), is r = (1, · · · , 1) ∈ Nm with probability 1 while on
the contrary discontinuities will produce repeated values with non-zero probability. More
precisely, the number of times each value is repeated corresponds to the number of failures
while sampling above a threshold. With this consideration we are now in position to define
the probability estimators.

In the sequel we assume that for a given y ∈ R | P [Y > y] > 0, (Yi)M̄y

i=1 is the merged
and sorted sequence of the states of N (non-)strict inequality random walks generated
until state y; M̄y =

N∑
i=1

M i
y is the sum of the counting random variables of each random

walk, r is the RLE of (Y1, · · · , YM̄y
), and l is its length.

Non-strict random walk

Proposition 3.11. The MVUE for the non-strict inequality random walk is:

p̂≥y =
l∏

i=1

N − 1
N − 1 + ri

. (3.36)

80

3.5. Discontinuous random variables

It verifies:

p2
y

(
p
−1/N
pois − 1

)
≤ var

[
p̂≥y
]
≤ p2

y

(
p
−1/N
pois

(
N − 1
N − 2

)#Dy
− 1

)
(3.37)

with ppois = py∏
d∈Dy

∆d

and #Dy = card(Dy).

Proof. On the one hand, for all a < b such that Y is continuous on (a, b), P [Y > b | Y > a]
can be estimated by (1− 1/N)#{Yn∈(a,b)} with #{Yn ∈ (a, b)} the number of events of the
superposed process in (a, b). Moreover, since b 7→ P [Y ≥ b] is left-continuous, it is also
a MVUE of P [Y ≥ b | Y > a] and this relation remains true if b→ a since card(∅) = 0.
Using the fact that the RLE of (Y1, · · · , YM̄y

) equals (1, ..., 1) with probability 1 when Y
is continuous, (1− 1/N)#{Yn∈(a,b)} = ∏

i(N − 1)/(N − 1 + ri) with probability 1.

On the other hand ∀d ∈ Dy, ∆d = P [Y > d] /P [Y ≥ d] can be estimated with the
MVUE defined in Lemma 3.3. The first state of each chain non smaller than d can be
considered as an iid. sample of Y | Y ≥ d. The number of times d is found in (Y1, · · · , YM̄y

)
is then the sum of N realisations of a Geometric random variable with parameter ∆d.
Hence, ∆d is estimated with (N − 1)/(N − 1 + rid) with rid the number of times d is found
in (Y1, · · · , YM̄y

).

Since D is countable, we consider R \D = ⋃
i Ii with (Ii)i a sequence of disjoint open

intervals. Note that some subsequence of (In)n may converge toward the empty set if D is
infinite countable with some accumulation points. However Y is continuous on R\D. Using
the renewal property of the Poisson process, one can consider that ∏d(N − 1)/(N − 1 + rid)
is a product of independent MVUE estimators. Especially, denoting by Mpois the number
of 1 in r, (1− 1/N)Mpois is a MVUE of ppois := py/

∏
d ∆d.

We now explicit the calculation for the bounds on the variance. One has:

E
[
(p̂≥y)2

]
= p2

poisp
−1/N
pois

∏

d∈Dy
E
[(

N − 1
N − 1 + Td

)2]

with Td ∼ NegBin(N,∆d). For a given d ∈ Dy, one has:

E
[(

N − 1
N − 1 + Td

)2]
=
∞∑

t=0

(
t+N − 1

t

)
(1−∆d)t∆N

d

(
N − 1

N − 1 + t

)2

=
∞∑

t=0

(
t+N − 2

t

)
(1−∆d)t∆N

d

N − 1
N − 1 + t

= ∆d

∞∑

t=0

(
t+N − 2

t

)
(1−∆d)t∆N−1

d

N − 2
N − 2 + t

N − 1
N − 2

N − 2 + t

N − 1 + t
.

81

Part II, Chapter 3 – Point process for rare event simulation

Furthermore, ∀t ≥ 0, N − 1
N − 2

N − 2 + t

N − 1 + t
∈ [1, (N − 1)/(N − 2)], which gives:

∆2
d ≤ E

[(
N − 1

N − 1 + Td

)2]
≤ ∆2

d

N − 1
N − 2 .

Eventually the variance writes:

p2
y

(
p
−1/N
pois − 1

)
≤ var

[
p̂≥y
]

= E
[
(p̂≥y)2

]
− p2

y ≤ p2
y


p−1/N

pois
∏

d∈Dy

N − 1
N − 2 − 1


 .

It is interesting to notice here that in a case of a discrete random variable, ppois = 1
and the bounds on the variance become:

0 ≤
var

[
p̂≥y
]

p2
y

≤
(
N − 1
N − 2

)#Dy
− 1 = #Dy

N
+ o

(1
N

)
. (3.38)

It means that the coefficient of variation is bounded by a quantity which does not depend
on the size but only on the number of jumps. Since this quantity is likely to be known with
good confidence and does not vary much with both y (if one looks at different thresholds)
and #Dy (the number of discontinuities before the given y), this can provide a robust
upper bound for the coefficient of variation.

Strict random walk

Proposition 3.12. The MVUE for the strict inequality random walk is:

p̂>y =
l∏

i=1

(
1− ri

N

)
. (3.39)

It verifies:

var
[
p̂>y
]

= p2
y


p−1/N

y

∏

d∈Dy
ν(∆d, N)− 1


 (3.40)

with ν : (∆, N) 7→ ∆1/N
(

1 + 1−∆
N∆

)
.

Proof. The same reasoning as for the proof of Proposition 3.11 applies where the MVUE
of a Geometric law is replaced by the one of a Bernoulli distribution. For the variance one
has:

E
[
(p̂>y)2

]
= p2

pois p
−1/N
pois

∏

d∈Dy

∆2
d

N

(
N − 1 + 1

∆d

)

E
[
(p̂>y)2

]
= p2

y p
−1/N
y

∏

d∈Dy

∆d(N − 1) + 1
N∆1−1/N

d

82

3.5. Discontinuous random variables

which gives the result.

On the one hand we have been able to define minimal variance unbiased estimators
for both the strict and non-strict random walks. They become equal when the random
variable is continuous and in this case one finds back the estimator defined in Section 3.3.1.
Especially the variance increase due to discontinuities in the distribution of Y is clearly
visible in Eq. (3.40) as ν(∆, N) > 1 if ∆ < 1. On the other hand their distributions are
not easy to characterise; in particular we could not derive any practical literal expression
of the variance in the non-strict case. In this context we suggest to consider an auxiliary
continuous random variable which involves an independent uniform random variable. This
transformation is general and does not require any other knowledge on the problem as
discussed below.

Pure Poisson estimator

Indeed when generating a Geometric random variable with iid. trials (Bn)n with the
Bernoulli distribution B(p) with probability of success p, one can also consider the random
variable Ỹ = B + U with B ∼ B(p) and U ∼ U [0, 1] an independent Uniform random
variable on the interval [0, 1]. Figure 3.4 plots the cdf of B and Ỹ . Furthermore,
∀y ∈ [0, 2], {Ỹ > y} = {B ≥ byc} ∩ {U > y − byc}. Practically speaking, this means
that the generation of the geometric random variable can be seen as a basic Acceptance-
Rejection scheme used to generate the increasing random walk on Ỹ until state 1: for
each generated B, sample also U ∼ U [0, 1] and accept the transition for Ỹ if U > y − byc.
Eventually, considering the fact that p = P [B = 1] = P

[
Ỹ ≥ 1

]
= P

[
Ỹ > 1

]
, p can also

be estimated using the increasing random walk on the continuous random variable Ỹ .
To conclude, in addition to the MVUE of p defined in Lemma 3.3 and at the cost of the

generation of an independent uniform random variable, one also produces an estimator of
the form of Eq. (3.7) with the same statistical properties. Embedding this in the generation
of the non-strict inequality random walk gives then an estimator with the same properties
as the ones in the continuous case. Algorithm 5, Theorem 3.2 and Corollary 3.5 precise
this point. In the sequel, we will refer to this estimator as the pure Poisson estimator.

Theorem 3.2. In Algorithm 5, the random variable My follows a Poisson law with
parameter − log P [Y > y].

Proof. The difference between the generation of the non-strict random walk and Algorithm
5 stands in the addition of the while loop from line 6 to line 12. This loop is entered
when a Geometric scheme is started: two consecutive events being equal is a non-zero
probability event only when Yn ∈ D. In this context, the condition {Un+1 > Un} lets
generate the counting random variable of the continuous random variable associated
with the Geometric scheme as explained in Section 3.5.2. Therefore it follows a Poisson
distribution with parameter − log ∆Yn . The renewal property of the Poisson process lets
conclude the proof.

83

Part II, Chapter 3 – Point process for rare event simulation

0

1 − p

1

0 1 2
ỹ

P
[Ỹ

≤
ỹ

]

Figure 3.4: cdf of a Bernoulli random variable B ∼ B(p) (solid dark line) and its associated
continuous random variable Ỹ = B + U (dark dashed line) with U ∼ U [0, 1].

Algorithm 5 Pseudo-code for the non-strict inequality random walk and the pure Poisson
estimator
Require: y

My = 0
Draw Y1 ∼ µY and U1 ∼ U [0, 1]; n = 1

3: while Yn ≤ x do
My = My + 1
Draw Yn+1 ∼ µY (· | Y ≥ Yn) and Un+1 ∼ U [0, 1]

6: while Yn+1 = Yn do
if Un+1 > Un then

My = My + 1
9: end if

n = n+ 1
Draw Yn+1 ∼ µY (· | Y ≥ Yn) and Un+1 ∼ U [0, 1]

12: end while
n = n+ 1

end while
15: return My, (Yn)n

Corollary 3.5. Let N ≥ 2 and (M i
y)Ni=1 be N iid. realisations of Algorithm 5, the estimator

p̂y =
(

1− 1
N

) N∑
i=1

M i
y

(3.41)

84

3.6. Numerical examples

has the same properties as in Proposition 3.2.

Remark 3.8 (Notations). Throughout this section, we have clearly stipulated when we
were considering the strict or the non-strict random walk. Here we use the same notation
as in the continuous case because this estimator, even if it based on the non-strict random
walk, is especially designed to have the same properties with or without discontinuities in
the cdf of Y , precisely the properties of the continuous case.

Finally the distinction between the strict and the non-strict random walks lets define
two different estimators for the probability of exceeding a threshold. Both are unbiased
and become the same when Y is indeed continuous. However their distributions are not
well-characterised.

In this scope we have introduced a third estimator based on the non-strict random
walk. With the addition of a while loop and an independent Uniform random variable, we
have been able to produce an estimator which has always the same statistical properties,
Y being continuous or not. This estimator is not optimal in terms of variance when Y is
actually discontinuous but remains close to the optimal one when the jumps (∆d)d remain
close to 1: the MVUE of Lemma 3.3 has a squared coefficient of variation approximately
equal to (1−∆)/N while it is − log(∆)/N for the pure Poisson estimator. Furthermore
this sub-optimal estimator is only a by-product of the MVUE and so both results can
be considered at the same time: one for the best estimated value and the other one for
building conservative confidence intervals. These results are illustrated in the following
section.

3.6 Numerical examples
In this section we focus on the illustration of the theoretical properties of the point process
based estimators, especially their ability to handle seamlessly discontinuous random
variables. More usual test cases for reliability engineering are handled in Section A.4.

3.6.1 Discretised random path
Problem setting

We consider here the example used by Simonnet [2016] to illustrate his results. It is a
numerical study with a Euler scheme of a diffusive process satisfying:

dXt = −∇V dt+
√

2
β
dWt, X0 = x0 (3.42)

where Wt is a Wiener process, β−1 is the temperature, and V is a potential defined by:

V (x1, x2) = −
(
x2

1
2 −

x4
1

4

)
− b

(
x2

2
2 −

x4
2

4

)
+ a

2x
2
1x

2
2,

85

Part II, Chapter 3 – Point process for rare event simulation

for some a and b. The goal is to estimate the probability that the process enters a given
set B before another set A from an initial state x0: if τC is the stopping time defined by
τC := inf {t ≥ 0 | Xt ∈ C}, then one seeks for estimating:

p = Px0 [τB < τA],

where Px0 is the distribution of (Xt)t starting from X0 = x0. As a function of x0 this
quantity is known as the Committor. From a practical point of view, it is often intractable
and a reaction coordinate Φ is introduced to measure how far a trajectory is escaping from
A before returning to it: Φ : Rd → R such that A = Φ−1 ((−∞, 0]) and B = Φ−1 ((1,+∞)).
With these notations, a trajectory enters B before returning to A if and only if:

Y := sup
t∈[0,τA)

Φ(Xt) > 1.

Y is then the real-valued random variable of interest and the problem is indeed to estimate
P [Y > 1]. With this notation, the theoretical results of Section 3.5 can be used directly.

Conditional sampling

To avoid possible issues due to imperfect conditional sampling with methods such as the
one described in Section 1.3.3, Simonnet [2016] makes use of an Acceptance-Rejection
sampling to generate samples above a given threshold. While not relevant in practice, this
method lets focus on the consistency between theoretical and practical results. A scheme
of such sampling is given in Algorithm 6.

Algorithm 6 Perfect sampling of Y ∼ µY (· | Y ≥ y) for the diffusive process
Require: y ∈ R . the current threshold one seeks to sample above
Y ∗ = −∞
while Y ∗ < y do

Generate a new trajectory Xt starting from x0
Y ∗ = sup

t∈[0,τA∪B]
Φ(Xt)

end while

Numerical results

Here we set Φ(x) = 0.5(1 + x1), a = 0.6, b = 0.3, x0 = (−0.9, 0), β = 10 and dt = 1 as in
[Simonnet, 2016]. Φ(x) = 0.5(1 + x1) and so Φ(x0) = 5 × 10−2: with a large time-step
some trajectories will go directly into A, producing a discontinuity in the cdf of Y . We
computed reference values using a crude Monte Carlo estimator with N = 106 and found
p = 6.8× 10−2 and ∆ = 0.4. We then set N = 300 to get a coefficient of variation below
10% because: CV [p̂]2 ≈ − log p/N ⇒ N ≈ 268.

86

3.6. Numerical examples

We first focus on the distribution of the number of iterations described in Propositions
3.9 and 3.10 and on the corrected number of iterations to get a pure Poisson distribution
(see Theorem 3.2).

0

5 × 10−3

10−2

1.5 × 10−2

600 650 700 750 800
m

P
[M̄

> 1
=

m
]

(a) Strict random walk

0

2.5 × 10−3

5 × 10−3

7.5 × 10−3

10−2

900 1000 1100
m

P
[M̄

≥ 1
=

m
]

(b) Non-strict random walk

0

5 × 10−3

10−2

700 750 800 850 900
m

P
[M̄

1
=

m
]

(c) Pure Poisson correction

Figure 3.5: Histogram over 104 realisations of the sum of N = 300 iid. counting random
variables for the strict random walk (Eq. 3.33), the non-strict one (Eq. 3.32) and the
pure Poisson correction (Theorem 3.2). Y has one discontinuity at y = 5 × 10−2 and
P [Y > y] /P [Y ≥ y] ≈ 0.4. The curves show the theoretical distributions.

Figure 3.5 shows the histograms of the sum of N iid. counting random variables for
the strict random walk, the non-strict one and the pure Poisson correction. They are
in good agreement with the theoretical distributions presented in Eqs. (3.33) and (3.32)
and Theorem 3.2 respectively. Especially we can see that for a given N , the costs of the
estimators are different. Indeed, if one considers that the cost is the number of calls to a
conditional simulator, then it is equal to the final number of iterations and Figure 3.5a
and 3.5b present a clear shift: on average the discontinuity will produces (1/∆ − 1)N
iterations for the non-strict random walk and only (1−∆)N for the strict random walk;
with ∆ = 0.4, this gives approximately 276 more iterations. On the histograms a shift of
250 to 300 is clearly visible in the x axis.

87

Part II, Chapter 3 – Point process for rare event simulation

We now check the accuracy of the probability estimators. Firstly, they should be all
unbiased. Secondly, for a given N one should see a variance increase from the MVUE of
the non-strict random walk of Eq. (3.36) to the pure Poisson estimator (Eq. 3.41) and to
the MVUE of the strict random walk (Eq. 3.39).

5 × 10−2

0.1

(1 − 1
N

)
∑

i
M>

i (1 − 1
N

)
∑

i
M≥

i p̂ p̂> p̂≥

Estimator

P
[Y

>
1]

Figure 3.6: Boxplots of the estimation of p ≈ 6.8×10−2 over 104 simulations with N = 300,
whiskers extending to the extreme values. p̂>: Strict random walk estimator (Eq. 3.39),
p̂≥: Non-strict random walk estimator (Eq. 3.36), p̂: Pure Poisson estimator (Eq. 3.41);
(1 − 1/N)

∑
Mi : estimators if the discontinuity is not taken into account with strict (>)

and non-strict equality (≥) random walks.

Figure 3.6 shows a boxplot of the three estimators over 104 simulations. As an
illustration, the estimators computed directly as if Y were continuous are also added
to the plot. The horizontal line stands for the reference value calculated with a crude
Monte Carlo. The estimated means are 6.81× 10−2 for the strict random walk estimator,
6.81 × 10−2 for the non-strict one and 6.81 × 10−2 for the pure Poisson one. This is in
good agreement with the estimated reference value p = 6.8 × 10−2. Furthermore, the
empirical variances are 5.18× 10−5 for the strict inequality random walk and 4.21× 10−5

for the pure Poisson estimator while the theoretical values given by Eqs. (3.40) and (3.9)
are 5.09× 10−5 and 4.16× 10−5. On the other hand, the probability estimators are clearly
not consistent when the discontinuity is not handled properly, i.e. when the estimator is
computed with the formula valid only in the continuous case (Eq. 3.7).

All together, these numerical results are in good agreement with the theoretical ones.

3.6.2 Discrete random variable

Counting problems are typical cases where the random variable of interest is known to be
integer-valued. Indeed, it is shown that many of these problems can be put into the setting
of estimating extreme probability [Mitzenmacher and Upfal, 2005, Bezáková et al., 2008,

88

3.6. Numerical examples

Botev and Kroese, 2008, Motwani and Raghavan, 2010]. Among others, we focus here on
the Boolean SATisfiability Problem (SAT problem). We do not pretend being competitive
against specific SAT solvers. Instead, we use this test case because the random variable
will have several discontinuity points not only at the origin.

The SAT problem

A SAT problem comprises

1. a binary vector of n literals which can be either TRUE (=1) of FALSE (=0): x =
(x1, · · · , xn) is called a truth assignment, e.g. x = (TRUE, TRUE, · · · , FALSE) =
(1, 1, · · · , 0) and

2. a set of m clauses {g1, · · · , gm} expressed as OR logical operators (also denoted by
∨) on the literals, e.g.: gi = xi1 ∨ xi2 ∨ · · · ∨ xik .

The SAT problem in itself is then defined as follows: find an assignment x such that all
clauses are true (SAT assignment problem) or count the number of different assignments
which satisfy all the clauses (Sharp-SAT). The conjunctive normal form (CNF) of a SAT
problem is then the product (logical operator AND or ∧) of all clauses F = g1 ∧ · · · ∧ gm
and both problems can be rewritten:

SAT assignment problem is there at least one x ∈ {0, 1}n such that F (x) = TRUE ?

sharp-SAT find card(S) = |S| with S = {x ∈ {0, 1}n | F (x) = TRUE}.

If one considers X a Uniform random vector on {0, 1}n, then it is known [Rubinstein and
Kroese, 2011] that:

pm = P [X ∈ S] = |S|2n .

Hence one can build an estimator of |S| by estimating the (extreme) probability pm. In
order to make use of the results of Section 3.5.2, one can consider the discrete random
variable Y = g(X) of the number of clauses satisfied by the assignment X:

Y = g(X) =
m∑

i=1
gi(X). (3.43)

Therefore Y ∈ J0,mK and:

P [X ∈ S] = P [F (X) = TRUE] = P [Y = m] = P [Y ≥ m] .

Conditional simulations

In order to perform the conditional simulations µY (· | Y ≥ i) needed by the random walks,
we propose to use the Gibbs sampler described in Section 1.3.3: starting from a sample

89

Part II, Chapter 3 – Point process for rare event simulation

X∗ such that g(X∗) ≥ i, we re-sample each coordinate sequentially conditionally to the
other ones to stay in the right domain.

Practically speaking, to avoid local maxima and improve the convergence of the Markov
chain, we do not start from the current X such that i = g(X). Instead, we pick at random a
starting point X∗ in a population already following the target distribution. This population
is built on-the-fly with all the generated samples X ∼ µX(· | g(X) ≥ j) with j ≤ i such
that g(X) ≥ i. Especially each fail of a Geometric law will increase its size instead of
replacing the previous vector as it is the case in usual Multilevel Splitting method (see
also Section A.2).

Finally, we also generate both the strict and the non-strict random walks in the same
run. This is to focus on the statistical properties of the number of iterations and of the
estimators. Here some ∆d = P [Y > d] /P [Y ≥ d] are very small, so that the size of the
population for the conditional sampling may become very small if one only keeps those
starting points strictly above the current threshold.

Numerical results

We consider here the SAT problem referred to as uf75-01 on satlib.org, also used by
Botev and Kroese [2012], who provide a reference value p = 5.98× 10−20 with a relative
error of 0.03%. It has m = 325 clauses in dimension n = 75. Hence Y is a discrete random
variable with up to 325 jump points. We first focus on the number of iterations of the
random walks. To do so, we simulate N = 104 random walks as well as the pure Poisson
correction. Figure 3.7 plots the histograms of the random number of iterations for each case
and theoretical curves with the ∆d estimated using an other simulation with N = 50000.

These plots show a good consistency between numerical results and theoretical formulae
from Eqs. (3.32) and (3.33) and Theorem 3.2. Especially with a lot of jump points, the
number of iterations are very different from Figure 3.7a to Figure 3.7b (almost hundred
times bigger).

We now focus on the probability estimators. In this scope we also consider the Smoothed
Splitting Method (SSM) [Cérou et al., 2011], which uses a case-specific continuous auxiliary
random variable. The aim of this benchmark is to assess the relevance of using such
transformations instead of considering the original random variable with the MVUE we
have proposed in Section 3.5.2. We refer the reader to [Cérou et al., 2011] for further
details on this transformation. The algorithm is then a usual Multilevel Splitting method
with p0 = 0.2. We set NSSM such that the total number of simulated samples for the
non-strict random walk and for the SSM are of the same order of magnitude. The non-strict
random walk generates on average 170 samples while an AMS with p0 = 0.2 typically
generates (1− p0)N log p/ log p0 samples. We set N = 103 for the random walks, which
gives NSSM ≈ 7712. Here we set NSSM = 8000.

With a lot of discontinuity points, the differences between the variances of the three
estimators is clearer, especially between the non-strict random walk estimator and the

90

3.6. Numerical examples

0

5 × 10−2

0.1

0.15

10 20 30
m

P
[M̄

> 32
5

=
m

]

(a) Strict random walk

0

2 × 10−3

4 × 10−3

6 × 10−3

8 × 10−3

0 200 400 600
m

P
[M̄

≥ 32
5

=
m

]

(b) Non-strict random walk

0

2 × 10−2

4 × 10−2

6 × 10−2

20 40 60
m

P
[M̄

32
5

=
m

]

(c) Pure Poisson correction

Figure 3.7: Histogram over 104 realisations of the number of iterations for the strict
random walk (Eq. 3.33), the non-strict one (Eq. 3.32) and the pure Poisson correction
(Theorem 3.2). Y is an integer-valued random variable with up to 325 jump points. The
curves show the theoretical distributions with estimated Geometric parameters ∆d with
N = 50000.

pure Poisson one. Also the strict inequality estimator has a much bigger variance. Indeed,
for some discontinuity points d ∈ Dy, ∆d ≈ 10−2 while N = 103, which gives coefficients
of variations around 1/

√
Np ≈ 32%. This is not an issue in the non-strict case as the

coefficient of variation of the MVUE of Lemma 3.3 typically scales like
√

(1− p)/N . On
the other hand, over the 102 simulations, we have an estimation of card(Dy) ≈ 66, which
gives an upper bound for the squared coefficient of variation in the non-strict case (see
Eq. 3.38): 6.83× 10−2, while the estimated squared coefficient of variation is 3.21× 10−2.
Concerning the SSM estimator, we have found a coefficient of variation of 0.33 while the
theoretical value should be 0.12. As already noticed by Cérou et al. [2011] this is due to
a non-perfect implementation of the Multilevel Splitting. This limitation is less visible
when keeping the discrete random variable because we save all generated samples and so
improve the approximation of the target distribution at each iteration.

91

Part II, Chapter 3 – Point process for rare event simulation

8.23 × 10−21

4.55 × 10−20

8.28 × 10−20

1.2 × 10−19

1.57 × 10−19

p̂SSM p̂> p̂ p̂≥

Estimator

P
[Y

≥
32

5]

Figure 3.8: Boxplots of the estimation of p ≈ 5.98 × 10−20 over 100 simulations with
N = 103, whiskers extending to the extreme values. p̂>: Strict random walk estimator
(Eq. 3.39), p̂≥: Non-strict random walk estimator (Eq. 3.36), p̂: Pure Poisson estimator
(Eq. 3.41), p̂SSM: Smoothed Splitting Method [Cérou et al., 2011] with NSSM = 8× 103.

Finally, these numerical results with a discrete random variable show a good consistency
with the theoretical ones. Also it appears that it may not be relevant to transform the
problem to consider a Multilevel Splitting method on a continuous random variable
because this can make the conditional simulations harder to approximate. The pure
Poisson correction is in this context a good trade-off between accuracy and knowledge of
the distribution. Furthermore, it is just a by-product of the non-strict random walk and
so the MVUE can also be computed in the same run. Concerning the strict inequality
random walk, it may suffer from two limitations if some ∆d are very small (typically if
1/∆d becomes of the order of magnitude of the total population size N) because 1) the
coefficient of variation of the MVUE of Lemma 3.4 is ≈

√
1/(N∆d), and 2) Markov chain

drawing may be poor because only few samples will be available in the right domain:
at each iteration, only the samples strictly above the current threshold are kept, so on
average only N∆d samples will be in the right domain. If Markov chain drawing is used to
approximate conditional sampling, then the diversity of the population may decay strongly
iterations after iterations, or eventually becomes null (no sample above the threshold).
Since Bréhier et al. [2015c] algorithm is based on strict inequality, it suffers from the same
limitations and can eventually fail to estimate the sought probability. Thus it seems less
robust than the non-strict random walk framework.

3.7 Conclusion
In this chapter, we defined the point process framework for rare event simulation. Indeed,
focusing on a random walk defined on the real-valued random variable Y = g(X) we

92

3.7. Conclusion

have been able to show that the optimal (minimal variance) splitting estimator, the
Last Particle Algorithm, was indeed a particular non-parallel implementation of a more
general estimator, it is the MVUE of the exponential of a Poisson parameter. Thus the
optimal splitting estimator writes indeed with a sum of iid. realisations of Poisson random
variables.

It is noticeable that in this framework, the optimal adaptive splitting does not make
any subset any more. In this spirit we showed a Glivenko-Cantelli like theorem, that is
the almost sure uniform convergence of the estimated cdf : the point process framework
lets show that LPA not only produced an estimator of the sought probability P [g(X) > q]
but of the cdf of Y over (−∞, q]. It also made us slightly modify the quantile estimator
proposed in [Guyader et al., 2011] which brings improvement on its bias.

Then the point process framework allowed us to properly handle possible discontinuities
in the cdf of Y . We showed that this leads to consider either strict or non-strict inequalities
in the definition of the Markov chain and were able to recover the distribution of the
counting random variables as well as the MVUE in both case. This does not require any
previous knowledge on these potential discontinuities.

From a practical point of view, it is also interesting to have an algorithm giving always
an estimator with the same distribution, with or without discontinuities. In this scope we
proposed also a sub-optimal estimator as a by-product of the non-strict case which has
the same distribution with or without discontinuities in the cdf of Y .

In Appendix A we will suggest some parallel implementations of the estimators seen in
this chapter using the fact that all one requires is indeed to generate iid. copies of the
increasing random walk. Practically speaking, the strict inequality implementation may
be less efficient if conditional sampling has to be done with Markov chain drawing and
can even return 0 if some jump points d ∈ Dy are such that ∆−1

d = P [X ≥ d] /P [X > d]
is of the order of magnitude of the population size N : this is due to the estimation of
the ∆d with crude Monte Carlo. The non-strict implementation prevents from such issues
because it generates Geometric random variables.

Finally, considering the global cost of an estimator against its variance, some optimisa-
tion may be done to start some random walks only from a given point and/or stop them
before the targeted value because all the jumps are not of equal size. This has not been
studied here and is let for further research.

93

Chapter 4

Nested sampling and rare event
simulation

This chapter addresses the issue of estimating the expectation of a real-valued random
variable of the form Y = g(X) where g is a deterministic function and X is a random
finite- or infinite-dimensional vector. Using results on rare event simulation from Chapter
3, we come up with an other insight on the nested sampling algorithm [Skilling, 2006],
precisely that it can be seen as an application of Campbell’s theorem on sums over a
Poisson process. Especially, it extends its use as follows: first the random variable Y does
not need to be bounded any more: it gives the principle of an ideal estimator with an
infinite number of terms that is unbiased and always better than a classical Monte Carlo
estimator – in particular it has a finite variance as soon as there exists k ∈ R > 1 such
that E

[
|Y |k

]
< ∞. Moreover we address the issue of nested sampling termination and

show that a random truncation of the sum can preserve unbiasedness while increasing the
variance only by a factor up to 2 compared to the ideal case. We also build an unbiased
estimator with fixed computational budget which supports a Central Limit Theorem and
discuss parallel implementation of nested sampling, which can dramatically reduce its
running time. Finally we extensively study the case where Y is heavy-tailed.

4.1 Introduction

Nested sampling was introduced in the Bayesian framework by Skilling [2006] as a method
for “estimating directly how the likelihood function relates to prior mass”. Formally, it
builds an approximation for the evidence:

Z =
∫

Θ
L(θ)π(θ)dθ,

where π is the prior distribution, L the likelihood, and Θ ⊂ Rd. It is somehow a quadrature
formula but in the [0, 1] interval rather than in the original multidimensional space Θ:

Z =
∫ 1

0
Q(P)dP,

95

Part II, Chapter 4 – Nested sampling and rare event simulation

where Q is the quantile function which is the generalised inverse of:

P (λ) =
∫

L(θ)>λ
π(θ)dθ.

Hence the name nested sampling because the initial input space is divided into nested
subsets {θ ∈ Θ | L(θ) > λ}. Convergence of the approximation error toward a Gaus-
sian distribution has been proved [Chopin and Robert, 2010] assuming that Q is twice
continuously differentiable with its two first derivatives bounded over [ε, 1] for some ε > 0.

On the other hand estimating a quantity such as P (λ) for a given λ is a typical
problem arising in rare event probability estimation. In this context, L represents a
complex computer code (denoted by g throughout this thesis, not necessarily positive
valued nor continuous nor bounded), θ is a vector of parameters (X in this thesis), and
Fλ = {θ ∈ Θ | L(θ) > λ} is the so-called failure domain. As presented in Section 1.3, the
idea of writing Fλ as a finite intersection of nested subsets Fλ0 ⊃ · · · ⊃ Fλn , −∞ = λ0 <

· · · < λn = λ goes back to Kahn and Harris [1951] and is now referred to as Multilevel
Splitting [Garvels, 2000, Cérou and Guyader, 2007] or Subset Simulation [Au and Beck,
2001]. Statistical properties and convergence results have been derived by interpreting the
Splitting algorithm in terms of an Interacting Particles System [Cérou et al., 2009, 2012].
Furthermore a particular implementation, sometimes called the Last Particle Algorithm
(LPA), has gained a lot of attention and Huber and Schott [2011], Huber et al. [2014],
Guyader et al. [2011] and Simonnet [2016] have independently proved its link with a
Poisson process (see Section 3.2). This algorithm is indeed somehow the one proposed
by Skilling [2006, Section 6] but the connection between nested sampling and rare event
simulation remained unclear (see Guyader et al. [2011] and the discussion following Huber
and Schott [2011] in Bernardo et al. [2011]).

The goal of this chapter is to fill this gap by recovering the nested sampling method
from the point process framework defined in Chapter 3. This lets us extend the nested
sampling to the estimation of the mean of any real-valued random variable (bounded or
not) and brings new theoretical results: 1) the ideal estimator with an infinite number of
terms (non truncated nested sampling) is unbiased; 2) the ideal nested sampling estimator
is always better than the classical Monte Carlo estimator in terms of variance; and 3) it
has a finite variance as soon as a moment of order k ∈ (1,∞) exists.

Moreover we address the issue of the nested sampling termination [see Skilling, 2006,
Section 7]. Using results on Multilevel Monte Carlo [Giles, 2008, McLeish, 2011, Rhee and
Glynn, 2015], we show that one can get an unbiased estimator with a random but a.s. finite
number of terms whose variance is only twice the one of the ideal estimator. Note that the
recent work on Generalised Adaptive Multilevel Splitting methods by Bréhier et al. [2015c]
does not address this issue. It only stands that one can stop the algorithm at any time and
still output an unbiased estimator by using the last particles as an approximation of the
truncated distribution in a Monte Carlo estimator. We also build an unbiased estimator

96

4.2. Ideal estimator

with a fixed computational budget which supports a Central Limit Theorem.
All these theoretical results are derived assuming that it is possible to generate samples

according to conditional laws when it is required. This is indeed a tough requirement
but this problem is well identified and not particular to these randomised estimators
[see Roberts, 2011]; especially Skilling [2006], Huber and Schott [2011], Guyader et al.
[2011] already acknowledge it and make use of Markov Chain Monte Carlo sampling (see
Section 1.3.3). While a lot of ongoing work on nested sampling focus on improving these
conditional simulations [e.g. Brewer et al., 2011], we focus in this chapter on theoretical
statistical properties and suggest a possible solution to the issue of choosing a bad stopping
criterion.

In section 4.2 we briefly recall the point process framework and derive a new ideal
(not practically implementable) estimator of m = E [Y] = E [g(X)]. It is closely related to
nested sampling with an infinite number of terms and is compared to the usual Monte
Carlo estimator. Section 4.3 proposes two possible estimators based on the ideal one.
Section 4.4 studies the specific case where Y = g(X) is heavy-tailed and Section 4.5 gives
information on practical implementation and numerical results.

4.2 Ideal estimator
From now on we consider a real-valued random variable Y , which can be for instance the
output of a mapping Y = g(X), as discussed in the Introduction.

Furthermore for any integrable real-valued random variable Y , one can write Y =
Y+ − Y− with Y+ and Y− non-negative random variables. Then, E [Y] = E [Y+]− E [Y−].
Thus in the sequel and without loss of generality we assume that Y is a non-negative
random variable with law µY . We also assume that Y has a continuous cdf FY . While we
have shown in Section 3.5 how to handle possible discontinuities in the cdf of Y we stick
to the continuous case for the sake of simplicity and to obtain closed-form formulas. As
a matter of fact the following developments could be conducted without this hypothesis.
Finally we write py instead of P [Y > y] = 1− FY (y), for any y ∈ R+.

4.2.1 Extreme event simulation
In this section we briefly recall the Poisson process framework (see Chapter 3) and show
how it can be used to define a mean estimator for a real-valued random variable.

Definition 4.1 (Increasing random walk). Let Y0 = 0 and define recursively the Markov
sequence (Yn)n such that

∀n ∈ N : P [Yn+1 ∈ A | Y0, · · · , Yn] = µY (A ∩ (Yn,+∞))
µY ((Yn,+∞)) .

In other words (Yn)n is a strictly increasing sequence where each element is generated

97

Part II, Chapter 4 – Nested sampling and rare event simulation

conditionally greater than the previous one: Yn+1 ∼ µY (· | Y > Yn). Furthermore we
showed that is it a Poisson process with mean measure:

∀y ∈ R, λ((−∞, y]) = − log P [Y > y] = − log
(
1− µY ((−∞, y])

)
.

Thus, the counting random variable of the number of events before y ∈ R: My = card{n ≥
1 | Yn ≤ y} follows a Poisson law with parameter ty = − log py.

With iid. realisations of Poisson random variables with parameter ty, the Lehmann-
Scheffé theorem states that the minimum-variance unbiased estimator (MVUE) of py = e−ty

is

p̂y =
(

1− 1
N

)∑N

i=1M
i
y

(4.1)

with (M i
y)Ni=1 iid. realisations of My. It has the following properties:

Proposition 4.1 (Statistical properties of p̂x).

sup
y0≤y
|FN(y0)− FY (y0)| a.s.−−−→

N→∞
0

var [p̂y] = p2
x

(
p−1/N
y − 1

)
.

with ∀y0 ≤ y, FN(y0) = 1− p̂y0.

Remark 4.1. The MVUE t̃y of ty = − log py is ∑N
i=1 M

i
y/N . From this relation one could

consider the suboptimal estimator for py:

p̃y =
(
e−

1
N

)∑N

i=1 M
i
y
. (4.2)

From the moment-generating function of a Poisson random variable with parameter Nty
we get the mean and variance of p̃y:

E [p̃y] = pN(1−e−1/N)
y = py + −py log py

2N + o
(1
N

)

var [p̃y] = pN(1−e−2/N)
y − p2N(1−e−1/N)

y

=
−p2

y log py
N

+
p2
y log py
N2 (log py + 1) + o

(1
N2

)
.

Hence this suboptimal estimator has a positive bias of order 1/N . The variances var [p̂y]
and var [p̃y] differ only from order 1/N2 and var [p̂y] < var [p̃y] as soon as py < e−1.

98

4.2. Ideal estimator

4.2.2 Definition of the moment estimator
For now on, we assume that Y is integrable, i.e. E [Y] < ∞. Noticing that for a
non-negative real-valued random variable with mean m = E [Y] = E [g(X)] one has:

m =
∫ ∞

0
pydy, (4.3)

the idea is to use the optimal estimator of py (see Eq. 4.1) to build an estimator for m.

Remark 4.2. For any continuous real-valued random variable, one has indeed:

m =
∫ ∞

0
P [Y > y] dy −

∫ 0

−∞
P [Y < y] dy.

In this chapter we focus on the right-hand tail of Y . Eventually all the results are directly
adaptable for the general case Y ∈ R.

From now on we will assume that N ≥ 2 point processes have been simulated and
denote by (M̄y)y the counting random variables associated with the marked Poisson
process: ∀y > 0, M̄y ∼ P(−N log py). The sequence (Yn)n≥1 is the cumulated one, i.e.
the combination of the states of the N Markov chains sorted in increasing order. We set
Y0 = 0 and then consider the following estimator:

m̂ =
∫ ∞

0

(
1− 1

N

)M̄y

dy

=
∞∑

i=0
(Yi+1 − Yi)

(
1− 1

N

)i
.

(4.4)

The second equality comes from the fact that y 7→ M̄y is constant equal to i on each
interval [Yi, Yi+1): there are 0 event before Y1, then 1 event before Y2, precisely at Y1, etc.

While the first form is easier to analyse because the law of (M̄y)y is well determined, the
second one paves the way for the practical implementation (see Section 4.3) and clarifies
the link with Nested Sampling:

m̂ =
∞∑

i=1
Yi

[(
1− 1

N

)i−1
−
(

1− 1
N

)i]
. (4.5)

This estimator appears as the limit case (sum with an infinite number of terms) of the
nested sampling estimator with a deterministic scheme [Skilling, 2006]:

m̃ =
∞∑

i=1
Yi
(
e

1−i
N − e−iN

)
(4.6)

with slightly modified weights: (1− 1/N) instead of e−1/N . This is a direct consequence of
the fact that an optimal unbiased estimator for e−ty is not e−t̃y (see Section 4.2.1, Remark
4.1).

99

Part II, Chapter 4 – Nested sampling and rare event simulation

Furthermore, Eq. (4.5) rewrites:

m̂ =
∞∑

i=1

Yi
N

(
1− 1

N

)i−1
. (4.7)

Remember that (Yn)n is a Poisson process with mean measure:

λ((−∞, y]) = −N log
(
1− µY ((−∞, y])

)
,

λ is absolutely continuous with respect to µY and so according to the Radon–Nikodym
theorem one has:

dλ(y) = N
dµY (y)

P [Y > y] = N
dµY (y)
py

.

Then the expectation of Y can be rewritten:

E [Y] =
∫ ∞

0
ydµY (y) =

∫ ∞

0

y

N
pydλ(y).

Here the Campbell’s theorem [see for example Kingman, 1992, p. 28] can be applied to
the estimation of the mean: let m̂C be defined by:

m̂C =
∞∑

i=1

Yi
N

P [Y > Yi] =
∞∑

i=1
h(Yi) (4.8)

with h(y) = ypy/N , then it insures that m̂C is absolutely convergent with probability one
iff.: ∫ ∞

0
min (h(y), 1) dλ(y) = 1

N

∫ ∞

0
min (ypy, 1) 1

py
dµY <∞.

If this condition holds, then:

E
[
eθm̂C

]
= exp

(∫ ∞

0
(eθh(y) − 1)dλ(y)

)
. (4.9)

This condition holds since one has:
∫ ∞

0
min (h(y), 1) dλ(y) ≤

∫ ∞

0
h(y)dλ(y) = E [Y] <∞

and one obtains:

E [m̂C] =
∫ ∞

0
h(y)dλ(y) =

∫ ∞

0
ydµY (y) = E [Y]

var [m̂C] =
∫ ∞

0
h(y)2dλ(y) = 1

N

∫ ∞

0
y2pydµY (y). (4.10)

Then Eq. (4.7) can be seen as an approximation of Eq. (4.8) where the terms P [Y > Yi]
are estimated with the Poisson process itself. Furthermore this estimator does not require
the finiteness of var [Y] to have a finite variance. Indeed, the Markov inequality gives

100

4.2. Ideal estimator

∀y ∈ R, E [Y] ≥ ypy such that the variance can be bounded from above:

var [m̂C] = 1
N

∫ ∞

0
y2pydµY (y) ≤ 1

N

∫ ∞

0
y E [Y] dµY (y) = E [Y]2

N
.

Hence the finiteness of E [Y] is a sufficient condition for the finiteness of var [mC]. In
Corollary 4.1 we will show that m̂ requires the finiteness of a moment of order 1 + ε, ε > 0,
for Y , to have a finite variance.

Proposition 4.2 (Statistical properties of m̂).

E [m̂] = m (4.11)

var [m̂] = 2
∫ ∞

0

∫ y

0
pyp

1−1/N
y′ dy′dy −m2 (4.12)

=
∞∑

k=1

2
Nk

∫ ∞

0

∫ y

0
pypy′

| log py′|k
k! dydy′

= 2
N

∫ ∞

0

∫ y

0
pypy′| log py′|dydy′ + o

(1
N

)
. (4.13)

Proof. One has:

E [m̂] =
∫ ∞

0
E
[(

1− 1
N

)M̄y
]

dx =
∫ ∞

0
pydy.

For the variance, one uses the fact that, for y > y′, M̄y − M̄y′ and M̄y′ are independent to
expand E [m̂2]:

E
[
m̂2
]

= 2
∫ ∞

0

∫ y

0
E
[(

1− 1
N

)M̄y+M̄y′
]

dy′dy

=
∫ ∞

0

∫ y

0
E
[(

1− 1
N

)M̄y−M̄y′ (
1− 1

N

)2M̄y′
]

dy′dy.

Furthermore the renewal property of a Poisson process gives M̄y−M̄y′ ∼ P(−N log(py/py′))
and is independent of M̄y. Eventually one can conclude using the results of Proposition
4.1.

Remark 4.3. As a matter of comparison, m̃ the original ideal nested sampling estimator
can also be written m̃ =

∫∞
0 p̃ydy. Then Remark 4.1 allows us to conclude that m̃ has a

positive bias of order 1/N.

Proposition 4.3 (Finiteness of var [m̂]).

∀N ≥ 2, var [m̂] ≤ 2
1 + 1/N E

[
Y 1+1/N

]2/(1+1/N)
.

Proof. Starting from the expression of the variance found in Proposition 4.2:

var [m̂] = 2
∫ ∞

0
py

∫ y

0
p

1−1/N
y′ dy′dy − E [Y]2 ,

101

Part II, Chapter 4 – Nested sampling and rare event simulation

we make use of Hölder’s inequality:

∫ y

0
p

1−1/N
y′ dy′ ≤

(∫ y

0
dy′
)1/N (∫ y

0
py′dy′

)1−1/N
≤ y1/N

(∫ ∞

0
py′dy′

)1−1/N

≤ y1/N E [Y]1−1/N .

And therefore:
var [m̂] ≤ 2

1 + 1/N E [Y]1−1/N E
[
Y 1+1/N

]
.

Using Hölder’s inequality again, one gets:

var [m̂] ≤ 2
1 + 1/N E

[
Y 1+1/N

] 2
1+1/N .

Corollary 4.1 (Value of N). Let ε > 0, if E [Y 1+ε] <∞ then for any N ≥ 1/ε, m̂ has a
finite variance.

While the usual Monte Carlo estimator requires the finiteness of E [Y 2] to have a finite
variance, this estimator only requires the finiteness of a moment of order 1 + ε. This
is especially interesting when Y is heavy-tailed and this case is further investigated in
Section 4.4.

4.2.3 Comparison with classical Monte Carlo

As the finiteness condition of the variance of m̂ is much weaker than for a naive Monte Carlo
estimator, one can expect a globally lower variance. This result is shown in Proposition
4.4. We first recall the crude Monte Carlo estimator:

m̂MC
def= 1

N

N∑

i=1
Yi (4.14)

with (Yi)Ni=1 iid. random variables with law µY .

Proposition 4.4. For any N ≥ 2, var [m̂] ≤ var [m̂MC].

Proof. On the one hand one has:

N var [m̂MC] +m2 = 2
∫ ∞

0
ypydy,

and on the other hand one can write:

N var [m̂] +m2 = 2
∫ ∞

0
py

∫ y

0
py′
[
N(p−1/N

y′ − 1) + 1
]
dy′dy.

102

4.3. Randomised unbiased estimator

Considering f : p 7→ p
[
N(p−1/N − 1) + 1

]
, we have f(1) = 1 and:

f ′(p) = (N − 1)(p−1/N − 1) ≥ 0, ∀p ∈ [0, 1].

Thus: ∀p ∈ [0, 1], f(p) ≤ 1. Therefore:

N var [m̂] +m2 ≤ 2
∫ ∞

0
ypydy

which shows that var [m̂] ≤ var [m̂MC].

Thus the ideal nested sampling estimator with corrected weights Eq. (4.5) is always
better than classical Monte Carlo in terms of variance and especially does not require the
finiteness of the second-order moment of Y to have a finite variance.

4.3 Randomised unbiased estimator

The ideal estimator Eq. (4.4) defined in Section 4.2 is not directly usable as it requires
to simulate an infinite number of terms in sum (4.4). While the usual nested sampling
implementations propose to stop the algorithm either after a given number of iterations, or
according to some criterion estimated at each iteration, we propose a randomised unbiased
estimator using recent results on paths simulation.

4.3.1 Definition

We are facing the issue of estimating E [m̂] while it is not possible to generate such a m̂ in
a finite computer time. This problem is well identified in the field of Stochastic Differential
Equations (SDE) where one often intends to compute the expectation of a path functional
while only discrete-time approximations are available. Recently there have been two major
breakthroughs that address this issue: first the Multilevel Monte Carlo (MLMC) method
[Giles, 2008] has introduced the idea of combining intelligently different biased estimators
(levels of approximations) to speed up the convergence and reduce the bias; then McLeish
[2011] and Rhee and Glynn [2015] have introduced a general approach to constructing
unbiased estimator based on a family of biased ones. Basically in our context it randomises
the number of simulated steps of the Markov chain, and slightly modifies the weights of
the nested sampling to remove the bias of the final estimator.

More precisely let us consider the truncated estimators (m̂n)n≥1:

m̂n =
∫ Yn

0

(
1− 1

N

)M̄y

dy =
n−1∑

i=0
(Yi+1 − Yi)

(
1− 1

N

)i

and T a non-negative integer-valued random variable independent of (Yn)n∈N such that

103

Part II, Chapter 4 – Nested sampling and rare event simulation

∀i ∈ N,P [T ≥ i] def= βi > 0; one builds the following estimator (with m̂0 = 0):

Ẑ =
∞∑

n=0

m̂n+1 − m̂n

P [T ≥ n] 1T≥n =
T∑

n=0

m̂n+1 − m̂n

P [T ≥ n]

=
∞∑

n=0
(Yn+1 − Yn)

(
1− 1

N

)n
1T≥n

P [T ≥ n] . (4.15)

Remark 4.4. The notation Ẑ might seem a bit confusing since Z is used in the Introduction
for the evidence as in [Skilling, 2006]. This is to keep consistency with Rhee and Glynn
[2015] notations where the randomising procedure comes from.

Proposition 4.5 (Statistical properties of Ẑ).

E
[
Ẑ
]

= m

var
[
Ẑ
]

=
∞∑

i=0
qi,Nβ

−1
i −m2

with:
qi,N = 2

(
1− 1

N

)2i ∫ ∞

0

∫ ∞

y′
pyp

N−1
y′

[−N log py′]i

i! dydy′. (4.16)

Proof. For the unbiasedness we start from last formulation in Eq. (4.15) for Ẑ. Then one
uses the fact that T and (Yi)i are independent. Finally, Eq. (4.4) and Proposition 4.2 let
conclude: E

[
Ẑ
]

= m.
For the second-order moment, we use the fact that Ẑ, like m̂, can be written with an

integral:

Ẑ =
∫ ∞

0

(
1− 1

N

)M̄y 1T≥M̄y

P
[
T ≥ M̄y

]dy

and apply the same reasoning as for E [m̂2]: given y > y′, the random variables M̄y − M̄y′ ,
M̄y′ and T are independent, which brings:

E


(

1− 1
N

)M̄y+M̄y′ 1T≥M̄y

P
[
T ≥ M̄y

]
1T≥M̄y′

P
[
T ≥ M̄y′

]




= E


(

1− 1
N

)M̄y−M̄y′ (
1− 1

N

)2M̄y′

β−1
M̄y′

1T≥M̄y

P
[
T ≥ M̄y

]




= E
[(

1− 1
N

)M̄y−M̄y′ (
1− 1

N

)2M̄y′

β−1
M̄y′

]

= py
py′

∞∑

i=0
eN log py′ [−N log py′(1− 1/N)2]i

i! β−1
i

=
∞∑

i=0
pyp

N−1
y′

[−N log py′(1− 1/N)2]i

i! β−1
i .

104

4.3. Randomised unbiased estimator

Then using this equality in E
[
Ẑ2
]
gives the solution.

The asymptotic behaviour of the sequence (qi,N)i will drive the possible choices for the
randomising distribution (βi)i: var

[
Ẑ
]
to remain finite implies that qi,Nβ−1

i → 0 when
i→∞.

Lemma 4.1. The sequence (qi,N)i goes to 0 at least at exponential rate. Furthermore, if
Y has density fY such that ‖fY ‖∞ <∞, it is also bounded from below by an exponentially
decreasing sequence.

Proof. Let ε > 0 be such that E [Y 1+ε] < ∞, N ∈ N | N > 1/ε and i ≥ 0. We further
extend the definition of var [m̂] given in Proposition 4.1, Eq. (4.12) for any N ∈ R. Proof
of Proposition 4.3 is based on Hölder’s inequality and still holds in this case, and so
for Corollary 4.1. Hence, according to Corollary 4.1: ∃N ′ ∈ R such that N ′ < N and
var [m̂] (N ′) <∞. Furthermore, given y and y′ one can write:

pyp
N−1
y′ (− log py′)i = pyp

1−1/N ′
y′ p

N+1/N ′−2
y′ (− log py′)i.

Moreover the function p : (0, 1) 7→ pN+1/N ′−2(− log p)i is bounded above by e−iii(N +
1/N ′ − 2)−i. Using the Stirling lower bound i! ≥ iie−i

√
2πi we can write:

pyp
N−1
y′ (− log py′)i ≤ pyp

1−1/N ′
y′

i!√
2πi(N + 1/N ′ − 2)i

.

Finally, this inequality brings:

qi,N ≤ var [m̂] (N ′)
(
N(1− 1/N)2

N + 1/N ′ − 2

)i 1√
2πi

and (N + 1/N − 2)/(N + 1/N ′ − 2) < 1, which concludes the first part of the proof.

Let us now assume that Y has a bounded density fY . One has:

qi,N = 2
∫ ∞

0

∫ y

0
pyp

N−1
y′

[−N log py′(1− 1/N)2]i

i! dy′dy.

Denote yL the left end point of Y (remember that Y is non-negative valued so that yL ≥ 0).
Then:

qi,N ≥ 2
∫ ∞

yL

∫ y

yL
pyp

N−1
y′

[−N log py′(1− 1/N)2]i

i! dy′dy.

We then consider the change of variable u = − log py and u′ = − log py′ ; for all i ≥ 1

105

Part II, Chapter 4 – Nested sampling and rare event simulation

one has:

qi,N ≥
2

‖fY ‖2
∞

(
1− 1

N

)2i ∫ ∞

0
e−2u

∫ u

0

e−Nu
′(Nu′)i
i! du′du

≥ 2
‖fY ‖2

∞

(
1− 1

N

)2i ∫ ∞

0
e−2u 1

N

∞∑

k=i+1

e−Nu(Nu)k
k! du

≥ 2
‖fY ‖2

∞

1
N(N + 2)

(
1− 1

N

)2i ∞∑

k=i+1

(
N

N + 2

)k

qi,N ≥
1

(N + 2)‖fY ‖2
∞

[
N

N + 2

(
1− 1

N

)2]i
.

Then it appears that the Geometric distribution plays a key role, as already noted by
McLeish [2011]. Hence we provide some theoretical results assuming that T is a geometric
random variable.

Proposition 4.6. If P [T ≥ n] = e−βn, β > 0, then:

var
[
Ẑ
]

= 2
∫ ∞

0

∫ y

0
pyp

1−γ(β,N)−1

y′ dy′dy −m2 (4.17)

with γ(β,N) = N/(1 + (eβ − 1)(N − 1)2).

Proof. Let α > 0 be such that (1− 1/N) = e−α. The argument is the same as the one in
Proposition 4.5. One has:

E
[
Ẑ2
]

= 2
∫ ∞

0

∫ y

0
E
[
e−α(M̄y−M̄y′)e(β−2α)M̄ ′y

]
dy′dy = 2

∫ ∞

0

∫ y

0
pyp

1−γ(β,N)−1

y′ dy′dy

with:
N

γ(β,N) = 2N −N2 + eβ(N − 1)2 = 1 + (N − 1)2(eβ − 1).

This expression is indeed the same as the one of Proposition 4.2 with the function
γ(β,N) instead of N . Hence the greater γ the smaller var

[
Ẑ
]
. Furthermore one has

directly all the results from Section 4.2.2, especially the finiteness conditions for the
variance given in Proposition 4.3 and Corollary 4.1, replacing N by γ(β,N).

While there is no value of β minimising var
[
Ẑ
]
at a given N (the smaller β the smaller

the variance of the randomised estimator Ẑ), there is an optimal value of N for a given
β, i.e. for an estimator with an almost surely finite number: N =

√
1 + E [T]. One can

reverse this relation, which gives:

βapp
def= log

(
1 + 1/(N2 − 1)

)
. (4.18)

106

4.3. Randomised unbiased estimator

Corollary 4.2. Let N ≥ 2 and P [T ≥ n] = e−nβapp(N), then:

var
[
Ẑ
]

(N) = var [m̂] (N+1
2) ≈ 2 var [m̂] (N). (4.19)

Proof. Noticing that for any N ≥ 2, one has γ(βapp(N), N) = (N + 1)/2 gives the
first equality. Then the fact var [m̂] typically scales with 1/N (see Eq. 4.13) gives the
approximation.

This means that instead of choosing an arbitrary stopping criterion for nested sampling,
randomising the number of iterations and computing Ẑ allows for keeping an unbiased
estimator without increasing drastically the variance (factor up to 2, reached with subop-
timal implementation of Corollary 4.2). This result will be illustrated in the examples of
Section 4.5.

4.3.2 Convergence rate
Throughout this thesis we consider that the computational cost for generating an estimator
is the number of simulated samples. Since we have assumed that it is possible to generate
directly according to any conditional distribution, it is here the number of calls to
a simulator of a conditional law. Later for practical implementation, the conditional
simulations will be performed using MCMC algorithms (see Section 1.3.3), i.e. one sample
will require several calls to a generator of µY . The cost will then be modified accordingly.

Proposition 4.7. Let τ be the random variable of the number of samples required to
generate Ẑ. One has τ = N + T .

Proof. If T = 0 then no other simulation is done other than the first element of each
Markov chain, i.e. that N simulations are done. Then each step requires the simulation of
the next stopping time, i.e. one simulation. Finally, this brings τ = N + T .

Corollary 4.3 (Convergence rate of Ẑ). For any non-negative integer-valued randomising
variable T such that E [T] <∞ and ∀i ∈ N, P [T ≥ i] > 0, one has:

E [τ] · var
[
Ẑ
]
≥ 2q1,2 +O

(1
N

)
, N →∞. (4.20)

Proof. Note that var [m̂] =
∞∑
i=0

qi,N − m2. Hence, one has var
[
Ẑ
]
> var [m̂] because

var
[
Ẑ
]

= var [m̂] ⇔ ∀i ∈ N, βi = P [T ≥ i] = 1 and E [τ] > N because E [τ] = N ⇔
E [T] = 0 while ∀i ∈ N, P [T ≥ i] > 0. Furthermore, the power series expansion of the
exponential function and the dominated convergence theorem let us rewrite var [m̂]:

var [m̂] =
∞∑

i=1
2
∫ ∞

0

∫ ∞

y′
pypy′

(− log py′)i
N ii! dydy′

var [m̂] =
∞∑

i=1
qi,2

(2
N

)i

107

Part II, Chapter 4 – Nested sampling and rare event simulation

which gives: var [m̂] = 2q1,2/N +O (1/N2). All together, these inequalities complete the
proof.

If the inequality (4.20) is close to an equality then Ẑ has a canonical square-root
convergence rate (as a function of the computational cost). However there is no guarantee
on this rate of convergence. Especially Corollary 4.4 below shows that it is not the case
when T has a geometric distribution.

Corollary 4.4. If T is a Geometric random variable such that ∀n ∈ N, P [T ≥ n] = e−βn

with β = Θ(1/N1+ε), ε ≥ 0, then:




E [τ] · var
[
Ẑ
]

= Θ (N) ε ∈ [0, 1]
E [τ] · var

[
Ẑ
]

= Θ (N ε) ε > 1

with β = Θ(N−1−ε) meaning:

∃k1 > 0, k2 > 0, N0 ≥ 1 | ∀N ≥ N0, k1N
−1−ε ≤ β ≤ k2N

−1−ε.

Proof. Denote B = 1/(eβ − 1); one has:

N +B

γ(B,N) = N + B

N
+ N2

B
− 1− 2N

B
+ 1
B

+ 1
N
.

With β = Θ(1/N1+ε), ε ≥ 0, one has B ∼ 1/β ∼ N1+ε. Finally, this gives:

N +B

γ(B,N) ∼ N +N ε +N1−ε +O(1),

which concludes the proof.

Hence the unbiased randomised estimator of Corollary 4.2 with β = βapp = Θ(1/N2)
does not have a canonical square-root convergence rate. Furthermore, even though the
realisation of the geometric random variable gives a small number of iterations, one may
want to run the algorithm longer to probe the tail of the random variable Y to make sure
that no important part is missing [Skilling, 2006]. This is why the idea behind randomised
estimators is to average several replicas of Ẑ because it will somehow average the quantities
1T≥n/P [T ≥ n] in Eq. (4.15). More precisely, let G(c) be the random variable of the
number of simulations of Ẑ one can afford with a computational budget c:

G(c) = max{n ≥ 0 |
n∑

i=1
τi ≤ c}

where τi is the computational effort required to generate the ith-sample Ẑi, one considers
the following estimator:

ζ(c) = 1
G(c)

G(c)∑

i=1
Ẑi. (4.21)

108

4.3. Randomised unbiased estimator

In this setting Glynn and Whitt [1992] showed a CLT-like result:

c1/2(ζ(c)− E
[
Ẑ
]
) L−−−→
c→∞ (E [τ] · var

[
Ẑ
]
)1/2N (0, 1). (4.22)

Hence in our context one has to tune (βi)i and N to minimise the product E [τ] · var
[
Ẑ
]
.

4.3.3 Optimal randomisation

Since T is a non-negative random variable one has P [T ≥ 0] = β0 = 1. Let C = {(βi)i ∈
(0, 1]N | β0 = 1 and ∀i ∈ N , βi+1 ≤ βi}; we intend to solve the optimisation problem:

argmin
(βi)i∈C
N∈J2,∞)

E [τ] · var
[
Ẑ
]

= argmin
(βi)i∈C
N∈J2,∞)

(
N − 1 +

∞∑

i=0
βi

)(∞∑

i=0
qi,Nβ

−1
i −m2

)
(4.23)

where the (qi,N)i are given by Eq. (4.16). Furthermore, one can rewrite the (qi,N)i assuming
that Y has a density fY > 0. Indeed in this context Yn has a density fn such that:

∀n ≥ 1, fn(y) = N
pN−1
y (−N log py)n−1

(n− 1)! fY (y).

This gives:

∀i ∈ N, qi,N = 2
(

1− 1
N

)2i E [R(Yi+1)]
N

with R(y) =
∫∞
y pudu/fY (y). Hence we further assume that (qi,N)i is decreasing, which is

the case for a Pareto random variable (see Section 4.4.1) and at least for any distribution
for which R is non-increasing like exponential and uniform distributions. In this context
Proposition 4.8 gives the optimal distribution for T for a given N .

Proposition 4.8 (Optimal distribution for T). If (qi,N)i≥1 is decreasing then the optimal
distribution (β∗i)i for T is given by:

∀i ∈ J0, i0K , β∗i = 1

∀i > i0 , β
∗
i =

√
N + i0
S0

√
qi,N

with i0 = min{i ∈ N | ∑i
j=0 qj,N −m2 > (N + i)q(i+1),N} and S0 = ∑i0

j=0 qj,N −m2.

Proof. First one shows that i0 is well determined. The sequence (∆i)i defined by:

∀i ∈ N ,∆i =
i∑

j=0
qj,N −m2 − (N + i)q(i+1),N

109

Part II, Chapter 4 – Nested sampling and rare event simulation

is increasing:

∆i+1 −∆i = q(i+1),N − (N + i+ 1)q(i+2),N + (N + i)q(i+1),N

= (N + i+ 1)(q(i+1),N − q(i+2),N) > 0.

Furthermore q0,N −m2 = 2
∫∞
0
∫∞
y′ pypy′

(
pN−2
y′ − 1

)
dydy′ ≤ 0 < Nq1,N , so ∆0 < 0, and

∆i → var [m̂] when i→∞ because (qi,N)i decreases at exponential rate. So there exists
i0 ∈ N | ∆i0−1 ≤ 0 and ∆i0 > 0.

Let us now consider the auxiliary problem:

argmin
(βi)i≥1
βi>0

(
β +

∞∑

i=1
βi

)(
q +

∞∑

i=1
qiβ
−1
i

)

with β > 0 and q ∈ R. We show that it has a solution if and only if q > 0. Let i ≥ 1,
cancelling the partial derivatives brings:

∀i ≥ 1, 0 =

q +

∞∑

j=1
qjβ
−1
j


+


β +

∞∑

j=1
βj


 −qi
β2
i

.

Then the solution should be of the form: ∀i ∈ J1,∞) , βi = c0
√
qi for some c0 > 0. Solving

now the problem with c0, the derivative writes q − β/c2
0. If q ≤ 0 then it is strictly

decreasing and there is no global minimiser. On the contrary, q > 0 brings c0 =
√
β/q and

∀i ≥ 1 , βi = c0
√
qi.

Thus, in our context with the constraint ∀i ∈ N , βi ≤ 1, this means that solving the
optimisation problem will set iteratively βi = 1 until the minimiser is feasible, i.e. until
i0

def= min{i ∈ N |
i∑

j=0
qj,N −m2 > (N + i)q(i+1),N}. Then the solution will be given by:

∀i ∈ J1, i0K, βi = 1

∀i > i0, βi =
√
qi,N√

1
N + i0

i0∑
j=0

(qj,N −m2)
.

It is part of the proof that i0 is well defined and so it appears that the optimal
distribution enforces the estimator to go at least until the ith0 event. Recalling that (Yn)n is
the superposed Poisson process, this can be understood in the sense that at least N events
are necessary to use at least one time each process. Even if the link between i0 and N is
not that straightforward, one can then conjecture that lim inf

N→∞
i0 =∞. As a matter of fact,

the exact resolution for Pareto random variables in Proposition 4.12 gives i0 ∼ (N logN).

110

4.3. Randomised unbiased estimator

Corollary 4.5 (Bounds on β∗i). For all i > i0, one has:
√

qi,N
qi0+1,N

> β∗i ≥
√
qi,N
qi0,N

. (4.24)

Proof. By definition of i0, one has:

(N + i0)qi0+1,N <
i0∑

j=0
qj,N −m2 ≤ (N + i0 − 1)qi0,N + qi0,N

which concludes the proof.

Thus the tail of the optimal distribution (β∗i)i is exponentially decreasing by Lemma
4.1. From these bounds on the (βi)i one can also derive bounds on the variance:

qi0+1,N E [τ]2 < E [τ] · var
[
Ẑ
]
≤ qi0,N E [τ]2 .

Assuming lim infN→∞ i0 = ∞ and using the lower bound on qi,N from Lemma 4.1, one
can show that lim infN→∞ E [τ] · var

[
Ẑ
]

=∞, which implies the existence of an optimal
N . Section 4.4.1 presents an exact resolution of this optimisation problem for a Pareto
random variable.

Finally, we have presented in this section the framework for an optimal resolution of
Problem (4.23) and proven existence of a solution under reasonable assumptions: (qi,N)i is
decreasing and limN→∞ i0 =∞. Furthermore the comprehensive resolution in the case of a
Pareto distribution in Section 4.4.1 legitimises them. Generally speaking, if (qi,N)i≥1 is not
decreasing the optimisation has to be performed over all the decreasing sub-sequences of
(qi,N)i, which turns it into a combinatorial problem [see Rhee and Glynn, 2015, Theorem
3].

4.3.4 Geometric randomisation
On the one hand the computation of the optimal distribution for T can be quite demanding
in computing time; and on the other hand the geometric law plays a key role as for
any distribution py, the sequence (qi,N)i decreases at exponential rate and the optimal
randomising distribution (when (qi,N)i is decreasing) is somehow a shifted geometric law.
Therefore we study the parametric case where P [T ≥ n] = e−βn, β > 0 and tune β and N
to minimise E [τ] · var

[
Ẑ
]
.

Using the exponential power series in var
[
Ẑ
]
(cf Eq. 4.17), the optimisation problem

(4.23) becomes:

min
β>0

N∈J2,∞)

(
N + 1

eβ − 1

)

∞∑

i=0
qi,2

(
2

γ(β,N)

)i
−m2


 . (4.25)

111

Part II, Chapter 4 – Nested sampling and rare event simulation

Proposition 4.9. There exists a global minimiser (βopt, Nopt) to Problem (4.25). Further-
more, for the extended minimisation problem with N ∈ [2,∞), (βopt, Nopt) satisfies the
relationship:

βopt = log

1 + 2

N2
opt − 1 + (Nopt − 1)

√
N2

opt + 6Nopt + 1


 . (4.26)

Proof. Denote QN(β) the quantity one seeks to minimise in Eq. (4.25). First, we show
that for any fixed N , there exists a global minimiser of QN(β). One has QN(β) → ∞
when β → 0 and γ(β,N)→ 0 when β →∞. Hence, either ∃β∞ ∈ (0,∞] such that:





QN(β) −−−−→
β↗β∞

∞

QN(β) <∞ ∀β < β∞.

Then QN is continuous on (0, β∞) with infinite limits on 0 and β∞, so it reaches its
minimum on (0, β∞); or ∃β∞ ∈ (0,∞) such that:




QN(β) <∞ ∀β ∈ (0, β∞]
QN(β) =∞ ∀β > β∞.

SinceQN is continuous on β−∞ by Monotone Convergence Theorem, QN reaches its minimum
on (0, β∞].

Let βopt(N) > 0 be such that infβ QN (β) = QN (βopt). We now show that there exists an
optimal N . It is sufficient to show QN (βopt)→∞ when N →∞. Denote B = 1/(eβ − 1);
one has:

1
γ(B,N) = 1

N
+ N

B
− 2
B

+ 1
NB

.

Hence, depending on the growth rate of B when N →∞, one would have:

B = O (N) , 1
γ
∼ N

B
⇒ inf

β
QN(β) −−−→

N→∞
∞

N = o (B) , 1
γ
∼ 1
N

or N
B
⇒ inf

β
QN(β) ∼ B

N
or N ⇒ inf

β
QN(β) −−−→

N→∞
∞.

Then in any cases QN(βopt) → ∞ when N → ∞, which means that there exists Nopt ∈
N | QNopt(βopt) = infN QN(βopt).

We now show the relationship between βopt and Nopt. Let us consider N ∈ [2,∞), the
partial derivatives of E [τ] · var

[
Ẑ
]
against B and N write:





∂
(
E [τ] · var

[
Ẑ
])

∂B
= var

[
Ẑ
]

+ E [τ]
∂ var

[
Ẑ
]

∂γ

∂γ

∂B
∂
(
E [τ] · var

[
Ẑ
])

∂N
= var

[
Ẑ
]

+ E [τ]
∂ var

[
Ẑ
]

∂γ

∂γ

∂N
.

112

4.3. Randomised unbiased estimator

At point (βopt, Nopt), both equations are cancelled, which gives:

∂γ

∂N
(Bopt, Nopt) = ∂γ

∂B
(Bopt, Nopt).

Recalling that γ(B,N) = NB/(B + (N − 1)2), this gives the equation: B2
opt − (N2

opt −
1)Bopt −Nopt(Nopt − 1)2 = 0. One can solve it in Bopt and keep the positive root, which
gives the solution.

Hence there is always an optimal solution to Problem (4.25), meaning this parametri-
sation is meaningful.

To summarise we have shown that by randomising the finite number of iterations and
slightly modifying the weights of the original nested sampling, it is possible to define
an unbiased estimator for the mean of any real-valued random variable with continuous
cdf , resolving the issue of choosing an appropriate stopping criterion. With a suboptimal
geometric randomisation as in Corollary 4.2, the variance is at most twice the one of the
ideal case (estimator of Eq. 4.4). However it is not usable with a fixed predetermined
computational budget and its convergence rate is slower than the canonical square-root
one. To circumvent this limitation, the idea is to average several replicas of the randomised
unbiased estimator (see Eq. 4.21). This new estimator remains unbiased and also supports
a Central Limit Theorem.

All these theoretical results assume that it is possible to generate conditional random
variables when required, as for the original nested sampling algorithm [see Skilling, 2006,
Section 9]. Efficient conditional simulation can be carried out in different ways, from
perfect simulation [see for example Propp and Wilson, 1996] to approximation using
random walks (see the Metropolis-Hastings algorithm in Section 1.3.3). The aim of this
chapter and the spirit of this thesis is not to challenge this hypothesis in a general manner
but only to provide a new insight on the theoretical definitions of the estimators; especially
here on the risk of choosing a bad stopping criterion in nested sampling, and to propose an
other tool to deal with this issue. Since nested sampling has been applied successfully to a
great number of problems so far, these results are expected to hold in these situations.
Also the examples of Section 4.5 are in good agreement with these theoretical results.

In the next section, we discuss the different stopping criteria usually recommended for
nested sampling and parallel implementation of the estimators.

4.3.5 Parallel implementation

Skilling [2006, Section 7] presents two possible termination rules based on criteria evaluated
on-the-fly:

• stop when the greatest expected increment (current weight and biggest found likeli-
hood value) is smaller than a given fraction of the current estimate;

113

Part II, Chapter 4 – Nested sampling and rare event simulation

• stop when the number of iterations significantly exceeds NH with H the information,
estimated on-the-fly.

Chopin and Robert [2010] use an other stopping criterion, close to the first one above, it
is: “stop when the new increment is smaller than a given fraction of the current estimate”.
An other option is to do a predetermined number of iterations [Brewer et al., 2011].
Unfortunately these criteria give no guarantee on the convergence of the estimator to the
sought value and may lead to biased estimation.

A first difference between the three first criteria and the last one stands in the fact
that this latter uses a known computational budget while the other ones will run until
the criterion is satisfied; hence there is no way to estimate the (random) final number of
iteration in advance. This difference is also to be found between Ẑ (see Eq. 4.15) and ζ
(Eq. 4.21): the first one will use a random number of simulated samples (the draw of the
randomising variable) while the second one is defined with a fixed computational budget.
Hence it is not straightforward to compare these two categories of estimators because the
setting is not the same.

An other main difference between these estimators is whether they enable parallel
computation or not. The three first stopping criteria need to be evaluated at each iteration
and are based on quantities estimated with the full process with parameter N . Hence they
do not allow for parallel computation. On the other hand, with a predetermined total
number of iterations, parallel computation as for the quantile estimator (see Appendix A)
can be carried out. The randomised estimator Ẑ also enables this feature as the random
number of iterations is drawn before the algorithm starts. Considering ζ, each replica can
be computed in parallel, and further the computation of each replica also allows for parallel
implementation. Hence ζ allows for a double parallelisation, which is worth noticing as
it may require a substantial computational budget to become effectively Gaussian (see
numerical examples of Section 4.5.4).

To conclude, one stresses out the fact that among estimators with random computational
budget, Ẑ is the only one allowing for parallel computation; furthermore it is also the only
one unbiased and its variance is at worst twice the one of the ideal estimator (upper bound
reached with suboptimal implementation of Ẑ as in Corollary 4.2). Both fixed-budget
estimators enable parallel implementation; however nested sampling with a predetermined
number of iterations has no reason to be close to the sought value. On the other hand, ζ
is unbiased and supports a CLT. All these considerations are illustrated in Section 4.5.

4.4 Application to heavy-tailed random variables
In this section we give insights on the properties of the estimators defined in Sections
4.2.2 and 4.3 when Y = g(X) is heavy-tailed. Mean estimation for heavy-tailed random
variables is a well identified problem often addressed by some parametric assumptions on
the cdf of Y ; see Beirlant et al. [2012] for a comprehensive overview of tail index estimation,

114

4.4. Application to heavy-tailed random variables

and Peng [2001], Johansson [2003], Necir et al. [2010] or Hill [2013] for references on mean
estimation for heavy-tailed random variables.

In the sequel we then give explicit results for the Pareto distribution: py = P [Y > y] =
1 ∧ y−a, a > 1. Note that this constraint a > 1 is the integrability condition for Y and
thus a sufficient condition for the convergence of the sum in the Campbell’s theorem, see
Eq. (4.8).

4.4.1 Exact resolution for a Pareto distribution

With an analytic form for the cdf of Y , we can derive explicit formulae for the variance of
the ideal estimator (infinite number of terms, see Eq. 4.12) and the optimisation problem
of Eq. (4.23).

First we compare the variance of the ideal estimator m̂ against usual Monte Carlo and
Importance Sampling estimators. In this latter case the importance density is chosen to
be a Pareto distribution with parameter b > 0.

Proposition 4.10 (Variance comparison). For a Pareto distribution, one hasm = a/(a−1)
and the variances write:

a > 2, var [m̂MC] = m(m− 1)2

2N −mN
a > 1 ; var [m̂C] = m

2N

a >
2N

2N − 1 , var [m̂] = m(m− 1)2

2N −m
a > 1 + b

2 , var [m̂IS] = m2(B − 1)2

N(2B − 1)

with B = (a− 1)/b ∈ (1/2,∞).

Proof. For the first equality:

E [Y] =
∫ ∞

0
pydy = a

a− 1

var [m̂MC] = 1
N

(
E
[
Y 2
]
− E [Y]2

)
= a

N(a− 2)(a− 1)2 = m(m− 1)2

(2−m)N ;

for the second one:

var [m̂C] = 1
N

∫ ∞

0
y2pydµY (y) = 1

N

∫ ∞

1
y2y−aay−a−1dy = a

2N(a− 1);

115

Part II, Chapter 4 – Nested sampling and rare event simulation

for the third one:

E
[
m̂2
]

= 2
∫ ∞

0

∫ y

0
pyp

1−1/N
y′ dy′dy = 2

∫ 1

0

∫ y

0
· · ·+ 2

∫ ∞

1

∫ 1

0
· · ·+ 2

∫ ∞

1

∫ y

1
· · ·

= 1 + 2
a− 1 + 2

(a− 1)(2(a− 1)− a/N)
var [m̂] = a

N(a− 1)2(2(a− 1)− a/N) ;

and for the last one:

var [m̂IS] = 1
N

[∫ ∞

1
y2a

2

b
y−2a+b−1dy − a2

(a− 1)2

]

var [m̂IS] = a2

N(a− 1)2

(
1

B(2−B) − 1
)

with B = b/(a− 1).

It is clearly visible that the classical Monte Carlo estimator needs a second-order
moment while m̂C only requires the finiteness of E [Y]; m̂ requires a > 2N/(2N − 1) ≈
1 + 1/2N and m̂IS requires a > 1 + b/2. It also illustrates the result of Proposition 4.4:
var [m̂] < var [m̂MC]. The optimal value b = a− 1 cancels out var [m̂IS]. It is well known
that there is an optimal density q for IS that cancels out the variance of the IS estimator
but it is case-specific: here a Pareto density with parameter a− 1 (see also Section 1.2).

Remark 4.5 (Limit distribution of classical Monte Carlo estimator). In the case of Pareto
distribution, when a > 2 the Central Limit Theorem gives the limit law of the estimator
while for 1 < a < 2 the Generalised Central Limit Theorem [see for example Embrechts
et al., 1997] states that ∑N

i=1 Yi the sum of N iid. realisations of Y is in the domain of
attraction of a stable law with parameter a:

N1−1/a
(

1
N

N∑

i=1
Yi −m

)
1
Ca

L−−−→
N→∞

Ya

with the characteristic function of Ya, φYa, writing:

φYa(t) = exp [−|t|a (1− i (tan (πa/2)) sgn(t))]

and Ca the normalising constant Ca = π1/a (2Γ(a) sin πa/2)−1/a.

We now detail the resolution of optimisation problems (4.23) and (4.25). Especially
we first explicit the form of the sequence (qi,N)i defined in Eq. (4.16).

Proposition 4.11. If Y is a Pareto random variable with parameter a > 1, then:

∀i ∈ N, qi,N = 2
(a− 1)(aN − 2)

[
a(N − 1)2

N(aN − 2)

]i
+ 1i=0

(a+ 1)
2(a− 1) .

116

4.4. Application to heavy-tailed random variables

Proof. Let i ≥ 0, one has:

∫ ∞

1

∫ ∞

y′
pyp

N−1
y′

[−N log py′(1− 1/N)2]i

i! dydy′

= [aN(1− 1/N)2]i

i!

∫ ∞

1

∫ ∞

y′
y−ay′−a(N−1)(log y′)idydy′

= [aN(1− 1/N)2]i

(a− 1)i!

∫ ∞

1
y′1−aN(log y′)idy′

= [aN(1− 1/N)2]i

(a− 1)i!
Γ(i+ 1)

(aN − 2)i+1

= 1
(a− 1)(aN − 2)

[
aN

aN − 2

(
1− 1

N

)2]i

with Γ standing here for the Gamma function. Furthermore:

∫ 1

0

∫ ∞

y′
pyp

N−1
y′

[−N log py′(1− 1/N)2]i

i! dydy′ = 1i=0
(a+ 1)
2(a− 1) .

(qi,N)i is decreasing iff.:

aN

aN − 2

(
1− 1

N

)2
< 1 which rewrites 1 < a

(
1− 1

2N

)
,

which is indeed the condition for the finiteness of var [m̂] already stated in Proposition
4.10.

Hence for a Pareto distribution (qi,N)i is decreasing. One can then look for i0, the
solution of the problem i0 = min{i ∈ N | ∑i

j=0 qj,N −m2 > (N + i)q(i+1),N}. Let W−1 be
the lower branch of the Lambert W function [see for example Corless et al., 1996], i.e. the
function W−1 defined over (−e−1, 0) such that:

x = W−1(x)eW−1(x).

Let k > 0 and K > 0 be such that ∀i ≥ 1, qi,N = kKN+i; let i ≥ 0, one has:

i∑

j=0
qj,N = a+ 1

2(a− 1) +
i∑

j=0
kKN+j = a+ 1

2(a− 1) + kKN 1−Ki+1

1−K .

Using this equality, one can look for i ∈ R such that:

a+ 1
2(a− 1) −m

2 + kKN 1−Ki+1

1−K = (N + i)kKN+i+1

a+ 1
2(a− 1) −m

2 + kKN 1
1−K = KN+i+1

(
(N + i)k + k

1−K

)

117

Part II, Chapter 4 – Nested sampling and rare event simulation

K ′ = logK
(
N + i+ 1

1−K
)
KN+i+1/(1−K)

with:

K ′ = logK
(

1
k

(
a+ 1

2(a− 1) −m
2
)

+ KN

1−K

)
KK/(1−K)

= logK
(
− a+ 1

2k(a− 1) + KN

1−K

)
KK/(1−K).

This latter equality is solved using W−1:

logK
(
N + i+ 1

K − 1

)
= W−1(K ′)

i = W−1(K ′)
logK −N − 1

1−K ,

such that i0 finally writes:

i0 = dW−1(K ′)
logK −N − 1

1−K e. (4.27)

The following proposition gives an asymptotic approximation when N →∞ to precise the
growth rate of i0.

Proposition 4.12. If Y is a Pareto random variable, then:

i0 = Nm

2

(
logN + log logN − log(m2)

)
+ o(N), N →∞.

Proof. The problem can be rewritten:

min
{
i ≥ 1 | 1

1− β −
aN − 2
2(a− 1) > βi+1

(
N + i+ 1

1− β

)}
.

Furthermore one has:
1

1− β = Nm

2 + (a− 2)2

4(a− 1)2 + o(1)

which brings that the left hand term is equal to (m/2)2 + o(1). Writing i = N(k0 +
k1 logN + k2 log logN) brings:

βi+1 = e−
2k0
m N−

2k1
m (logN)−

2k2
m (1 + o(1)) .

Hence one has to choose k0, k1 and k2 such that the right hand term also equals (m/2)2+o(1),
which gives the solution.

118

4.4. Application to heavy-tailed random variables

Corollary 4.6 (Order of magnitude of E [τ] · var
[
Ẑ
]
).

E [τ] · var
[
Ẑ
]
∼

N→∞

(
m(m− 1)

2

)2

logN.

Proof. Using the asymptotic expansion of i0 one finds qi0 ∼ (N2 logN)−1(m− 1)2. Fur-
thermore, one has E [τ] ∼ i0. Finally, the use of E [τ] · var

[
Ẑ
]
∼ qi0 E [τ]2 gives the

result.

Corollary 4.6 shows that E [τ] · var
[
Ẑ
]
→ ∞ when N → ∞ so there is an optimal

value for N that minimises E [τ] · var
[
Ẑ
]
; a numerical resolution for several values of a

from 1 to 3 was performed and the result is displayed in Figure 4.1. We also present in
Figure 4.2 a comparison between the minimal variance estimate (estimator of Eq. (4.21)
with the optimal distribution (β∗i)i and optimal N) and the classical Monte Carlo one.
There we can see that for a . 2.5 the new estimator performs better in terms of variance;
especially for a < 2 it remains finite while var [m̂MC] =∞.

As explained in Section 4.3.4 we consider now a Geometric random variable T with
parameter β for the random truncation.

Proposition 4.13. If Y is a Pareto random variable with parameter a > 1 and ∀n ∈
N, P [T ≥ n] = e−βn then:

var
[
Ẑ
]

= m(m− 1)2

2γ(β,N)−m
and

βopt = log
(

1
B+

+ 1
)

(4.28)

where B+ is the positive root of the quadratic polynomial P (B):

P (B) = 2Nopt −m
(Nopt − 1)2B

2 − 2mB −
(
m(Nopt − 1)2 + 2N2

opt

)
.

Proof. One gets the expression of the variance directly from Section 4.2.2 with γ(N, β)
instead of N . Then, denoting B = 1/(eβ − 1), one solves the problem:

∂

∂B

(
(N +B)

(
a

2(a− 1)γ − a

))
= 0.

With this relation and the one of Eq. (4.26) one can derive the optimal parameters
(βopt, Nopt). Figure 4.1 shows a numerical resolution of this problem for several values of
a ∈ (1, 3].

Furthermore, if one considers the approximation of the optimisation problem (4.25)

119

Part II, Chapter 4 – Nested sampling and rare event simulation

with relation (4.18) instead of (4.26), one has to minimise:

N 7→ N2 +N − 1
N + 1−m m(m− 1)2.

The derivative against N > m− 1 writes:

1− 1
(N + 1−m)2m(m− 1).

Denoting Napp ∈ R the minimiser, one has:

Napp = max
(
m− 1 +

√
m2 −m− 1, 2

)
. (4.29)

This approximation is the red dotted-dashed line of Figure 4.1. As we can see, it is in good
agreement with the optimal values, both for the parameter N and for the global variance
(see further Section 4.4.2 and Figure 4.2). For numerical simulation, we will choose bNappc.

4.4.2 Comparison of the estimators

We have seen in Sections 4.3.3 and 4.3.4 two ways of implementing the ideal estimator
m̂ defined in Section 4.2.2 with a fixed computational budget. Then we have presented
their exact behaviour in a case of a Pareto random variable. These two ways involve a
truncation of the infinite sum (4.4) by an integer-valued random variable T . In the first
implementation the distribution of T and the number N of point processes are optimised in
order to minimise the estimator variance. In the second implementation, the distribution
of T is enforced to be geometric and its parameter as well as N are optimised.

While the first implementation is optimal in terms of variance, it requires to solve a
combinatorial problem, which can turn it into a poorer algorithm in terms of computational
time. In this scope, the parametric algorithm constraining the randomising variable T to
be geometric with parameter β is much simpler to implement. The aim of this section is
to benchmark these two implementations and to challenge the optimal parameters against
the fixed ones we will suggest.

More precisely, while both optimisations ended up with optimal parameters depending
on the distribution of Y , we also consider the parametric algorithm with parameter βapp

given by Eq. (4.18) and N = Napp, 2, 5 or 10.
Figure 4.2 shows the relative increase of the standard deviations due to the suboptimal

implementations for a given computational budget, i.e. for a given number of generated
samples. It also shows the standard deviation ratios between the optimal implementation,
the classical Monte Carlo estimator (see Eq. 4.14) and m̂ given by Eq. (4.4). For this
latter, it is assumed that its computational cost is N , i.e. that it costs 1 to simulate
an increasing random walk (see Definition 4.1) while it requires an infinite number of
simulated samples. This calls for certain comments:

120

4.4. Application to heavy-tailed random variables

1.0 1.5 2.0 2.5 3.0

2
5

10
20

50
20
0

50
0

a

N
op

tim
al

General
Parametric
Approximation

Figure 4.1: Optimal values for N in the general (cf Section 4.3.3) and in the parametric
(cf Section 4.3.4) cases with the approximation of Eq. (4.29). a is the parameter of the
Pareto distribution.

2.0

1.5

1.0

0.5

0.0
1.0 1.5 2.0 2.5 3.0

(βopt, Nopt)
(βapp, Napp)
(βapp, 10)
(βapp, 5)
(βapp, 2)
Monte Carlo
m̂

a

σ
/σ

op
t

Figure 4.2: Ratios of the standard deviations of different estimators over the standard
deviation of the optimal estimator ζ of Section 4.3.3. The classical Monte Carlo estimator
is defined in Eq. (4.14); m̂ is the ideal estimator (4.4); the other estimators are randomised
estimators of Eq. (4.21) with enforced geometric distribution for T with parameter β and N
as follows: (βopt, Nopt): optimal parameters of Proposition 4.9; (βapp, Napp): approximated
optimal parameters of Eqs. (4.18) and (4.29). a is the parameter of the Pareto distribution.

• the parametric implementation with optimised parameters (βopt, Nopt) remains
competitive against the optimal implementation (solid black line going from ≈ 1.3
to ≈ 1.1);

121

Part II, Chapter 4 – Nested sampling and rare event simulation

• the parametric implementation with parameters βapp and Napp is almost not distin-
guishable from the parametric implementation with optimal parameters βopt and
Nopt. This means that it is not necessary to strive to estimate the parameters
(βopt, Nopt);

• the classical Monte Carlo estimator is better than the optimal implementation as
soon as a & 2.5 and better than the parametric implementation as soon as a & 2.3;
this confirms that nested sampling is especially convenient for heavy-tailed random
variables;

• the standard deviation of m̂ illustrates the efficiency of the ideal estimator compared
to the classical Monte Carlo one (cf. Proposition 4.10), with a standard deviation at
least twice as small;

• generally speaking and without any knowledge on the distribution of Y , N should
not be set too small as the variance increases much faster when it is smaller than
the optimal value; especially with β = βapp the finiteness condition of the variance
writes a > 1 + 1/N .

Given these results we can consider that the parametric implementation is a good trade-off
between minimal variance estimation and complexity, especially when no information on
the distribution of Y is provided.

4.5 Examples
In the previous sections, we have demonstrated how the point process point of view lets
improve the original nested sampling in three ways: 1) we demonstrated a bias or order
1/N for the original ideal nested sampling scheme and proposed corrected weights to get an
ideal unbiased estimator; by ideal we mean a sum with an infinite number of terms. 2) We
proposed to resolve the issue of choosing a termination rule by using a randomised sum.
This new estimator remains unbiased and we further suggested a general implementation
which does not depend on the random variable of interest and only doubles the variance
of the ideal estimator. 3) We defined a nested sampling based estimator with a finite
predetermined computational budget, which is unbiased and supports a Central Limit
Theorem. The aim of this section is to illustrate these results and potential issues with
the termination rule on a usual test case for nested sampling.

4.5.1 Practical implementation
All what the nested sampling really requires is the generations of several increasing random
walks. Appendix A is devoted to the definition of practical guidelines on possible parallel
implementations and computational times of the increasing random walk. Hence we

122

4.5. Examples

consider in this section that one has a generator of a random walk and present directly
the adaptation for the computation of Ẑ and ζ.

As explained above, we do not intend to solve the combinatorial optimisation problem
in the general case and so we present here a pseudo-code for the parametric case. Reader
interested in the optimal resolution is referred to [Rhee and Glynn, 2015]. We then present
in Algorithm 7 how to compute Ẑ and in Algorithm 8 how to compute ζ(c). In this latter
case we assume that N and β are given, being optimised (with previous knowledge or
simulations) or not.

Algorithm 7 Pseudo-code for Ẑ
Require: N , β

Generate T according to P [T ≥ n] = e−βn

2: Get (Yn)T
n=1 an increasing random walk with parameter N until the Tth event

Set Y0 = 0
4: Ẑ =

T∑
i=0

(Yi+1 − Yi)
(

1− 1
N

)i
eβi

Algorithm 8 Pseudo-code for ζ(c)
Require: c, N , β
G← 0; ζ ← 0;
while c > 0 do

Generate T ∗ according to P [T ≥ n] = e−βn

c = c− (N + T ∗); G = G+ 1; T [G] = T ∗

end while
if c < 0 then . discard the last replica if it exceeds the budget

G = G− 1; T = T [1 : G]
end if
foreach g in 1:G do

Start Algorithm 7 from step 2 with T = T [g]
ζ = ζ + Ẑ

end foreach
ζ = ζ/G

Basically, Algorithm 8 is just a wrap-up of Algorithm 7 with an update of the remaining
computational budget.

Note that these practical algorithms make use of Markov chain drawing to approximate
the conditional distributions and for this purpose generate indeed several samples for only
one state of the increasing random walk. This is referred to as a burn-in and modify the
cost of an estimator defined in Proposition 4.7 as follows: τ = N + bT , with b this burn-in
parameter. Now the cost is the number of calls to the generator of Y (which amounts to
generate X and to call g). Since this increase is common to all algorithms considered here,
we will not mention it any more.

123

Part II, Chapter 4 – Nested sampling and rare event simulation

4.5.2 Variance increase

In this section, we intend to check the unbiasedness of the ideal estimator m̂ of Section 4.2.2
as opposed to the bias of order 1/N of the original nested sampling (see Eq. 4.6). They
differ only in the weights used: exp−1/N instead of 1− 1/N ; thus they are computed
in the same run. Also we check the variance increase between m̂ and the suboptimal
randomised estimator of Corollary 4.2. To do so, we use an example from Skilling [2006]
where it is known that 100 iterations of the increasing random walk on average are enough.
The aim is to estimate the evidence of a likelihood with uniform prior over a d−dimensional
unit cube: m = E [g(X)] = E [Y] with:

g(x) = 100
d∏

i=1

e
−x2

i

/
2u2

√
2πu

+
d∏

i=1

e
−x2

i

/
2v2

√
2πv

, (4.30)

X ∼ U
(
−[1

2 ,
1
2]d
)
, d = 20, u = 0.01 and v = 0.1. This represents a Gaussian “spike”

of width 0.01 superimposed on a Gaussian “plateau” of width 0.1. Figure 4.3 plots the
log-likelihood log y against the log-tail distribution log py.

0 50 100 150 200 250

-1
00

0
10
0

20
0

30
0

Niter/N ∼ − log py

lo
gy

Original
Modified

Figure 4.3: Log-Likelihood against probability for the original example of Skilling [2006,
Section 18] defined in Eq. (4.30) and the modified version of Eq. (4.31). Both lines are got
from a single run of nested sampling with N = 300 and stopping criterion 250N iterations.

We then run nested sampling with stopping criterion “number of iterations = 100N”
as well as Ẑ for several values of N from 100 to 500. Figure 4.4 shows the boxplots of
the estimators and Table 4.1 summarises these numerical results over 500 simulations:
both Ẑ and m̂ are unbiased while (NS) has a bias of order 1/N (cf Remark 4.3). The

124

4.5. Examples

variance increase between m̂ and Z̃ is in good agreement with the theoretical relationship
of Corollary 4.2, it is var

[
Ẑ
]

(N) = var [m̂] ((N + 1)/2) ≈ 2 var [m̂]. Also the ratio
var [NS] / var [m̂] goes from 1.14 to 1.9. This variance increase appears to be of order 1/N2,
which is consistent with the variance increase between p̂y and p̃y (see Remark 4.1).

Hence, the optimal choice of the nested sampling weights leads to significant variance
reduction and removes the bias of the original nested sampling when it goes far enough.
Unbiasedness can be maintained at the cost of at most doubling the variance of the estimator
and even less compared to the currently used nested sampling weights. Furthermore, there
is no need to choose (and justify) a stopping criterion for nested sampling any more.

NS Z̃

0
20
0

40
0

60
0

80
0

10
00

m̂ NS Z̃m̂ NS Z̃m̂ NS Z̃m̂ NS Z̃m̂

N = 100 N = 200 N = 400 N = 400 N = 500

Figure 4.4: Boxplots of ideal infinite nested sampling m̂ of Eq. (4.4) and (NS) of Eq. (4.5)
and randomly truncated Ẑ (Corollary 4.2) for the estimation of E [g(X)] with g as in
Eq. (4.30) and X ∼ U

(
−[1

2 ,
1
2]d
)
, d = 20. (NS) Ideal nested sampling is got with

Niter = 100N as this is known to be enough in this case. (NS) and m̂ are obtained from
the same runs. The (red) dot-dashed line is the theoretical value of m.

4.5.3 Adaptive stopping criteria
As we stated in the Introduction, one of the main concerns of this work was to point
out the potential risk of using nested sampling with a bad stopping criterion. In this
context we run nested sampling on the previous example with the adaptive stopping

125

Part II, Chapter 4 – Nested sampling and rare event simulation

N 100 200 300 400 500
E [NS] 142.3 117.7 114.6 111.5 109.5
E [m̂] 103.0 100.8 102.8 102.8 102.6
E
[
Ẑ
]

111.9 97.4 100.4 103.7 102.4
var

[
Ẑ
]
/ var [m̂] 3.23 2.49 1.90 2.20 1.70

var [NS] / var [m̂] 1.90 1.33 1.24 1.17 1.14
var

[
Ẑ
]
/ var [NS] 1.71 1.87 1.54 1.87 1.5

Table 4.1: Variance increase between the randomised unbiased nested sampling estimator
Ẑ, the original biased nested sampling (NS) and the ideal unbiased estimator m̂.

criteria mentioned in Section 4.3.5. The first one is directly picked out from [Chopin and
Robert, 2010], it is “stop when the current increment is less than 10−8 times the current
estimate”. The second one is based on the estimation of the information H and is the one
described in the Appendix of [Skilling, 2006]; it is “stop when the number of iterations
is greater than 2NH”. Figure 4.4 shows that for N = 500 the estimators should be well
converged and so we set N = 500.

Figure 4.5 shows that nested sampling estimator can be not consistent if the termination
rule is not well-chosen. Here both implementations miss the spike. In this context, the
random truncation of Ẑ appears as a conservative practice. However, even though Ẑ

allows for parallel computing (see Appendix A), Ẑ as well as the adaptive stopping criteria
do not let work with a fixed computational budget. Yet one may have to work with fixed
computational resources.

4.5.4 Nested sampling with fixed computational budget

There is only one nested sampling implementation which allows for fixing the total
computational budget in advance. It is the one which stops after a given number of
iterations. Following Rhee and Glynn [2015] we have proposed in Sections 4.3.3 and 4.3.4
a randomised estimator which also works with a predetermined computational budget.
It is still unbiased and supports a Central Limit Theorem. The goal of this section is to
compare these two estimators. We slightly modify the previous example (see Eq. 4.30)
to narrow the spike: u = 0.001 instead of u = 0.01, and to make the random variable
heavy-tailed:

ght(x) = g(x)/
(

d∑

i=1
x2
i

)0.4d

. (4.31)

Figure 4.3 compares this modified example with the original one. The heavy-tailed
behaviour with tail index 1/0.8 = 1.25 is clearly visible (limit slope of log-likelihood is
0.8), i.e. that P [Y > y] ∼ ky−1.25 for some k > 0 as y → ∞, as well as the effect of
the narrower spike (shift of the mass from − log p ≈ 50 to − log p ≈ 90). With Inv-χ2

126

4.5. Examples

NS-inc m̂ Z̃

0
50

10
0

15
0

20
0

25
0

30
0

NS-H
(a) Nested sampling estimators with
adaptive stopping criteria, m̂ and Ẑ

NS-inc

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

NS-H
(b) Zoom on the nested
sampling estimators with
adaptive stopping crite-
ria

Figure 4.5: Effect of the choice of a stopping criterion for nested sampling estimator
when estimating m = E [g(X)] with g as in Eq. (4.30) and X ∼ U

(
−[1

2 ,
1
2]d
)
, d = 20.

(NS-inc): nested sampling stopped when current increment is less than 10−8 times the
current estimator; (NS-H): nested sampling stopped when the number of iterations exceeds
2NH; m̂ and Ẑ as in Figure 4.4. The (red) dot-dashed line is the theoretical value of m.

approximation of 1/∑X2
i , the sought value is E [ght(X)] ≈ 1.08× 1042.

Nested sampling is run with N = 1000 and N = 10000. We stop it after 100N iterations
as in [Brewer et al., 2011]. This makes a total computational budget c = 105 (resp. 106).
ζ is implemented with a suboptimal geometric randomising variable with parameter βapp

(see Eq. 4.18) and N = 20. N = d because it is both the theoretical parameter of ζ and the
population size for conditional sampling. Hence it should not be set too small according to
the dimension of the input space (see Appendix A). Considering the heavy-tail behaviour
of Y = g(X), the estimator has a finite variance as soon as a > 1 + 1/N = 1.05. One the
one hand we know here that the tail index of Y is equal to 1/0.8 = 1.25; on the other
hand it is easy to check this condition afterwards by estimating the slope on the plot log Y
against Niter/N as in Figure 4.3.

It is visible on Figure 4.6 that nested sampling did not go far enough and misses an
important part of the mass: E [NS(105)] = 5.32× 1029 and E [NS(106)] = 2.41× 1029 while
the reference value is 1.08× 1042. On the one hand, ζ is unbiased (estimated means are
6.43 × 1041 and 1.52 × 1042). On the other hand it does not seem to be approximately
Gaussian yet. Indeed Ẑ can be relatively heavy-tailed [McLeish, 2011] and a consequent

127

Part II, Chapter 4 – Nested sampling and rare event simulation

NS(105) NS(106) ζ(105) ζ(106)
107

1015

1023

1031

1039

Figure 4.6: Estimation of m = E [ght(X)] with X ∼ U
(
−[1

2 ,
1
2]d
)
, d = 20. (NS): nested

sampling stopped after 100N iterations; ζ: estimator of Section 4.3.4 with βapp (Eq. 4.18)
and N = 20. 105 and 106 are the computational budgets used. The (red) dot-dashed line
is the theoretical value of m.

computational budget may be required for ζ to effectively become normally distributed.

4.6 Conclusion
Nested Sampling has been proposed as a method for estimating the evidence in a Bayesian
framework and applied with success in a great variety of areas like astronomy and cosmology.
Since its introduction, a lot of work has been done to clarify its convergence properties
[e.g. Evans, 2007, Chopin and Robert, 2010, Keeton, 2011] and to handle the issue of
conditional sampling [e.g. Mukherjee et al., 2006, Brewer et al., 2011, Martiniani et al.,
2014]. However nested sampling termination remains an open issue and a matter of user
judgement [Skilling, 2006, Section 7].

Linking nested sampling with the results on rare event simulation, we have extended
it to the estimation of the mean of any real-valued random variable (being bounded
or not) and derived the optimal nested sampling weights. Furthermore we proved that
1) an idealised nested sampling with slightly modified weights and an infinite number
of iterations is unbiased; 2) its variance is always lower than the classical Monte Carlo
estimator one’s; and 3) the random variable of interest does not need to have a finite
second-order moment to produce an estimator with finite variance. This latter property
makes nested sampling especially relevant for heavy-tailed random variables as developed
Section 4.4.

Furthermore, we also present two ways of implementing a practical unbiased estimator
with an a.s. finite number of terms, resolving the issue of choosing an arbitrary stopping
criterion. The first estimator can be used exactly as usual nested sampling and preserves
unbiasedness while only doubling the variance of the ideal estimator (infinite number of
terms). The second one can be used with a predetermined fixed computational budget
and supports a Central Limit Theorem. Practically speaking, they both enable parallel

128

4.6. Conclusion

implementation (unlike usual adaptive nested sampling strategies) and do not depend on the
random variable of interest. Finally, it is worth mentioning that even if these randomising
procedures can seem too burdened, at least the use of the corrected nested sampling
weights (1 − 1/N instead of exp−1/N) in the usual nested sampling implementations
removes the bias (if it goes far enough) and decreases the variance of the estimator.

129

Chapter 5

Rare event simulation with random
processes

We have described in Chapter 1 advanced statistics for the estimation of extreme quantile
and probability of the form p = P [g(X) > q] with X ∈ X a finite- or infinite-dimensional
random vector with known distribution µX and g a deterministic function g : X → R
quantifying the state of a system. We now focus on the static case, i.e. X ⊂ Rd for
some d ≥ 1: X is a set of parameters of a computer code modelling an industrial system.
Precisely at the end of this chapter we will focus on the simulation of a spherical tank
under internal pressure and try to estimate the probability that the cumulated equivalent
plastic strain of this tank be greater than a given security threshold q (failure mode).

In Chapter 3 we have presented the point process framework for extreme event simula-
tion and have shown that it enables parallel implementation of what was known as the
Last Particle Algorithm estimator, the minimal variance Multilevel Splitting estimator.
Indeed we proved that this estimator was simply the Minimal Variance Unbiased Estimator
(MVUE) of the exponential of a Poisson parameter. This lets us define parallel practical
algorithms for estimating probability, quantile and moment of g(X). This can dramatically
reduce their computational time without lowering their good statistical properties (see
Appendix A).

However in some settings only few hundred samples are available and it is still too
much computational time. The above mentioned method typically requires −bNbatch log p
sequential simulations with Nbatch the number of point processes per sequential algorithm
and b a burn-in parameter for conditional sampling (see Sections 1.3.3 and A.2). With
standard values of Nbatch = 20, p = 10−7 and b = 20, this means that it would require
≈ 6447 sequential calls to the model g. In order to set these ideas down, our numerical
code for the spherical tank has a random computational time depending on the plastic
state in the vessel of about 5 to 10 minutes. It would eventually require on average
3.22× 104 to 6.45× 104 minutes or 23 to 45 days to compute the probability estimator.
This can be even worse with more complex industrial problem for which computational
time is about 5 hours.

In this context a common idea is to use a cheap-to-evaluate surrogate model ξ instead
of the true model g. This surrogate model is trained with the computational budget and
used either as a plug-in estimator in a crude Monte Carlo method or in more advanced
statistics (see Chapter 2). Especially we have seen that when p is small the required

131

Part II, Chapter 5 – Rare event simulation with random processes

number of samples for a Monte Carlo estimator is very high and the failure domain may
be very difficult to approach. That is why some algorithms now combine both methods,
i.e. make use of Multilevel Splitting to both estimate the sought probability and improve
the learning of the failure domain [Bourinet et al., 2011, Bourinet, 2016, Li et al., 2012,
Bect et al., 2016].

In this chapter we propose to integrate the results on Poisson processes related to rare
event simulation developed in Chapter 3 into these algorithms. Especially we show that
the point process framework is well suited for the case where ξ is a random process with
known distribution. Essentially it adds a dimension to the original problem defined with
the deterministic code g but all the results can be applied directly on this augmented
problem.

Furthermore, the point process framework allows for a cheap and natural computation
of the SUR criteria presented in Section 2.2.3. Combined with the parallel algorithms
presented in Appendix A it means that SUR strategies can be used even for extreme
probability estimation at a very reasonable cost.

We also define new SUR criteria which aim at getting a global precision of the metamodel
over the safety domain F̄ = {x ∈ X | g(x) ≤ q}. These criteria are also straight away
estimated in the point process framework and allow for a more robust approach to the
failure domain when the probability is very low. Especially, and unlike in the above
mentioned splitting based learning approaches, it makes a clear distinction between the
enrichment step and the estimation of the probability. In this mood the number of samples
for the enrichment of the model can remain low. Furthermore it can output an estimation
of the probability at any time: there is no need to wait until the algorithm reaches the
final threshold.

Finally, we present a numerical study of these new criteria on usual test cases as well
as on an industrial problem from CEA.

5.1 Rare event simulation

5.1.1 Augmented problem
We now consider that g is a realisation of a random process ξ with known distribution
defined over a given probability space (Ω0,F0,P0) indexed by x ∈ X:

∀ω0 ∈ Ω0, x ∈ X 7→ ξ(x, ω0) ∈ R (5.1)

is a measurable function. Formally, one can consider that this assumption only adds a
dimension to the original problem. Recall that X ∈ X is a random variable defined on the
probability space (Ω,F ,P), one can consider the random variable on the product space
ΩY = Ω× Ω0:

Y : (ω, ω0) ∈ Ω× Ω0 7→ ξ(X(ω), ω0) ∈ R.

132

5.1. Rare event simulation

Eventually the real-valued random variable is not Y = g(X) any more, but Y = ξ(X(ω), ω0),
defined on the probability space (ΩY ,FY ,PY). In essence the uncertainty on the code is
treated exactly the same way as the uncertainty on the inputs: as soon as the computer
code g is regarded as a black-box, it means that only some point-wise measurements can
be done, exactly like, for example, the thickness of the tank. In this latter case this
uncertainty is modelled with a random variable with a known distribution, and so it is
for the computer code. When there is no risk of confusion, we will drop in the sequel the
dependence on the variables ω and ω0 and write only Y = ξ(X).

We will refer to the original setting with the deterministic code g as the deterministic
case, and to the following setting with the random process ξ as the random case. While
in the deterministic case, Y given X was a deterministic quantity, we now have that Y
given X follows the distribution µξ(X) of the random process at point X. Still the problem
writes:

PY [Y > q] =
∫

R
1y>qdµY (y) =

∫

X×R
1y>qdµξ(x)(y)dµX(x). (5.2)

Eventually all the results on the point process framework for rare event simulation are
valid because they make no assumption on the real-valued random variable Y : probability,
quantile and moments of Y can be estimated using the methods described in Chapters 3
and 4. Especially the random process does not need to be Gaussian.

5.1.2 Link with other metamodel based algorithms

We recall here some well-used methods for probability estimation based on random
processes and presented in Section 2.3.

AKMCS The Active learning using Kriging and Monte Carlo Simulation [AKMCS,
Echard et al., 2011] method uses the mean function of the random process: m : x ∈ X 7→
E0 [ξ(x)] = m(x) to define a surrogate classifier: 1g(x)>q ← 1m(x)>q. This mean function is
supposed to be cheap-to-evaluate for any x ∈ X and then AKMCS proposes to make a
crude Monte Carlo estimation of the quantity P [m(X) > q] = P [E0 [ξ(X)] > q]. In the
light of the point process framework, this calls for few comments:

1. when the sought probability is extreme, the quantity P [m(X) > q] will be hard to
estimate with a crude Monte Carlo sampling even though m is cheap. Here the point
process estimator could be used.

2. it neglects the uncertainty due to the non-perfect knowledge of g and to consider
that the point-wise mean of the process is close to the unknown function g. In other
words, it means that the error due to the random process is now measured in terms
of area in X. Since the true function g is not accessible, this quantity cannot be
known: the error due to the process is not taken into account any more.

133

Part II, Chapter 5 – Rare event simulation with random processes

MetaIS The Metamodel-based Importance Sampling [MetaIS, Dubourg et al., 2013]
method uses the cdf of µξ(x) to define an importance distribution for the estimation of
the probability P [g(X) > q]. Indeed, recall that the optimal importance distribution is
defined by (see Section 1.2):

dµX̃(x) = 1g(x)>q

p
dµX(x)

it proposes to approximate the indicator function x 7→ 1g(x)>q with the complementary cdf
of ξ(x): 1g(x)>q ← P0 [ξ(x) > q] = µξ(x)((q,∞)). In this context, the normalising constant
of the importance distribution becomes:

p̃aug =
∫

X
µξ(x)((q,∞))dµX(x) =

∫

X

∫

R
1y>qdµξ(x)(y)dµX(x). (5.3)

This latter quantity is indeed the one found in Eq. (5.2) and is referred to as the augmented
failure probability by Dubourg et al. [2013]. This means that the point process estimator
can directly be used in the MetaIS method as an other tool to estimate it. Instead Dubourg
et al. [2013] suggested the use of a crude Monte Carlo. Here the point process estimator is
especially interesting because the points got from this crude Monte Carlo sampling are also
used as initial states for the sampling of the importance density with a Metropolis-Hastings
method. As explained in Chapter 4, the point process can be seen as both a mean to
estimate the normalising constant of the distribution and to generate samples according
to it. In this context, it would output both a more precise estimation of the augmented
failure probability and samples for the Importance Sampling scheme.

Bayesian approach The Bayesian decision-theoric framework has been applied to
extreme probability estimation first by Bect et al. [2012]. In this context, it considers the
random variable α = P [ξ(X) > q] instead of the deterministic quantity p = P [g(X) > q]
and uses the (conditional) expectation of α as an estimator for p (see Section 2.2.3). This
expectation writes:

E0 [α] = E0

[∫

X
1ξ(x)>qdµX(x)

]
=
∫

X
E0
[
1ξ(x)>q

]
dµX(x) =
∫

X×Ω0
1ξ(x,ω)>qdµX(x)d P0(ω). (5.4)

This latter quantity is the one found in Eq. (5.2) and the point process framework can
also be used in this algorithm as the tool to estimate it.

Therefore the point process estimator can be used directly in already-existing metamodel-
based algorithms instead of crude Monte Carlo to estimate the probability of failure.

As presented in Chapter 2, such strategies are the combination of a statistical method
(crude Monte Carlo, Importance Sampling or Splitting for instance) and a learning strategy.
In this thesis we argue that a clear distinction has to be made between these two aspects

134

5.1. Rare event simulation

of metamodel based algorithms. For instance the heuristic criteria of AKMCS or MetaIS
(see also Section 2.2.2) have proven good practical results and should not be underrated.
In the next section, we show how the point process associated with Y can be used to
quantify the uncertainty due to the use of the random process ξ. We also show how it can
be used to ease the use of SUR strategies presented in Section 2.2.3.

5.1.3 Uncertainty reduction
From an initial prior on the distribution of the random process, the goal is to evaluate
iteratively the deterministic code g at some locations to reduce the uncertainty carried
out by the introduction of the random process. In Section 2.2.3 we presented the Stepwise
Uncertainty Reduction (SUR) framework, which aims at sequentially choosing the next
sample(s) to be evaluated in order to minimise the remaining error.

We briefly recall here the quantities and the formalism described in this section. We
focus on the random variable α defined in Eq. (2.38), it is:

α = P [ξ(X) > q] =
∫

X
1ξ(x)>qdµX(x) (5.5)

because it embeds the uncertainty on the probability of failure PY [Y > q] due to the
random process ξ.

Recall that ξ is defined on the probability space (Ω0,F0,P0), we also define for any
n ≥ 1 the σ−algebra Fn generated by the random vector (ξ(xi))ni=1 for any set of points
(x1, · · · ,xn) ∈ Xn. We further assume that ξ is a stationary process with finite variance
(see Section 2.1.4).

We denote by µξ(x)
n the conditional distribution of ξ(x) | Fn, ξn(x) the conditional

mean E0 [ξ(x) | Fn] and σ2
n(x) the conditional variance; Pn is the conditional distribution

P0 [· | Fn], En [·] = E0 [· | Fn] the conditional expectation and covn [·] = cov0 [· | Fn] the
conditional covariance.

In the Bayesian decision-theoretic framework, an algorithm is seen as a sequence of
decisions made from an increasing amount of information in order to reduce the risk
carried out with the final approximation αn of α. Here a decision corresponds to the
evaluation of the computer code at one or more locations and n is a total number of calls
to g. By selecting the quadratic loss function, the risk is:

E0
[
(α− αn)2

]
.

By definition of the conditional expectation, this quantity is minimised amongst all
Fn-measurable functions by:

αn = En [α] =
∫

X
pqn(x)dµX(x) = PY [Y > q | Fn] (5.6)

with pqn(x) = Pn [ξ(x) > q]. Conditionally to {ξ(xi) = g(xi)}, Eq. (5.6) is deterministic

135

Part II, Chapter 5 – Rare event simulation with random processes

and can be estimated with a point process as described previously. The conditional
variance:

νn = En

[
(α− αn)2

]

is a measure of the remaining error, i.e. of the randomness of α not captured by the
filtration Fn. We can also derive an upper bound of νn as in Section 2.2.3:

Γn =
∫

X
varn

[
1ξ(x)>q

]
dµX(x) =

∫

X
pqn(x) (1− pqn(x)) dµX(x). (5.7)

This upper bound is interesting because it reduces the integral over X × X of νn to an
integral over X.

A direct application of the SUR concept in this case leads to find at a given iteration
n the r ≥ 1 next samples (xn+1, · · · ,xn+r) ∈ Xr minimising the forthcoming conditional
variance:

Jαn,n+r(xn+1, · · · ,xn+r) = En [νn+r(xn+1, · · · ,xn+r)] (5.8)

or its upper bound:

JΓ
n,n+r(xn+1, · · · ,xn+r) = En [Γn+r(xn+1, · · · ,xn+r)] (5.9)

where:

νn+r(xn+1, · · · ,xn+r) = var [α | Fn, ξ(xn+1), · · · , ξ(xn+r)]

Γn+r(xn+1, · · · ,xn+r) =
∫

X
var

[
1ξ(x)>q | Fn, ξ(xn+1), · · · , ξ(xn+r)

]
dµX(x)

.

Note that with these criteria, the selected sample(s) depend(s) measurably on Fn [Bect
et al., 2012].

We further assume that ξ is a Gaussian process. With standard covariance kernels
described in Section 2.1.4, Y is then a continuous random variable and the increasing
random walk associated to Y is a Poisson process. In Section 2.2.3 we showed that these
quantities can be rewritten assuming that ξ is a Gaussian process. Using Eq. (2.41),
Eq. (5.8) becomes:

Jαn,n+r(x∗) = En

[
α2
]
−

∫

X×X
Pn

[
U

(2)
n+r > q, U

(1)
n+r > q | X1 = x1,X2 = x2

]
dµX(x1)dµX(x2) (5.10)

with x∗ = (xn+1, · · · ,xn+r) ∈ Xr and (U (1)
n+r, U

(2)
n+r)> a random vector whose conditional

distribution given (X1,X2)> and Fn is:

U

(1)
n+r

U
(2)
n+r


 |


X1

X2


 ,Fn ∼ N




ξn(X1)
ξn(X2)


 ,


σ

2
n(X1) covn [ξn+r(X1), ξn+r(X2)]

covn [ξn+r(X1), ξn+r(X2)] σ2
n(X2)




 .

(5.11)

136

5.1. Rare event simulation

Eq. (5.10) can be rewritten:

Jαn,n+r(x∗) = En

[
α2
]
−

αn

∫

X×X×R
Pn

[
U

(2)
n+r > q | U (1)

n+r = y,X1 = x1,X2 = x2
] 1y>qdµξ(x1)

n (y)dµX(x1)
αn

dµX(x2).

This latter expression shows that this criterion can be estimated using the point process
on Y : as for the MetaIS algorithm, it can be used to both estimate αn and to get iid.
samples according to:

1y>qdµξ(x1)
n (y)dµX(x1)
αn

.

These samples can be used together with iid. samples drawn according to µX to get an iid.
population well suited to the estimation of the second part of the equality (see Section
5.2.1 below). As mentioned by Chevalier et al. [2014], the first one En [α2] does not depend
on x∗ and it is thus pointless to strive to estimate it for the SUR strategy. Note that when
r = 0, U (1)

n and U (2)
n are independent conditionally to Fn and one finds back:

Jαn,n = En

[
α2
]
− α2

n = νn.

This development can also be conducted with the upper bound Γn. Applying the same
reasoning to Eq. (2.48), one finds:

JΓ
n,n+r(x∗) =

∫

X
Pn

[
U

(2)
n+r < q, U

(1)
n+r > q | X = x

]
dµX(x)

= αn

∫

X×R
Pn

[
U

(2)
n+r < q | U (1)

n+r = y,X = x
] 1y>qdµξ(x)

n (y)dµX(x)
αn

. (5.12)

Note that for this criterion, the distribution of the couple U (1)
n+r and U

(2)
n+r is conditional on

only one sample in X ∈ X since Γn reduces the integral over X×X to an integral over X:

U

(1)
n+r

U
(2)
n+r


 | X,Fn ∼ N




ξn(X)
ξn(X)


 ,


σ

2
n(X) covn [ξn+r(X), ξn+r(X)]

covn [ξn+r(X), ξn+r(X)] σ2
n(X)




 . (5.13)

For r = 0, U (1)
n and U (2)

n are decorrelated conditional on Fn and JΓ
n,n = Γn appears indeed

as the average probability of misclassification of the last samples of the point process.

Furthermore, the Mean Squared Error (MSE) in the estimation of p = P [g(X) > q] by
α̂n writes:

E
[
(α̂n − p)2

]
= E

[
E
[
(α̂n − p)2 | Fn

]]
= E

[
α2−1/N
n + p2 − 2αnp

]

= E
[
α2
n

(
α−1/N
n − 1

)
+ (αn − p)2

]
.

(5.14)

In this latter equality, the first term is due to the estimation of αn while the second
one is related to the conditional variance of α, i.e. the remaining randomness due to ξ:

137

Part II, Chapter 5 – Rare event simulation with random processes

conditionally to {ξ(x) = g(x),∀x ∈ X}, one has α = p.
Numerical results of Section 5.3.2 will illustrate this trade-off between model error

and statistical error. While it appears that the number N of random processes used to
estimate αn should be as large as possible to reduce the statistical error below (or at the
same level as) the model error, a relatively moderate number of Poisson processes NSUR

can be sufficient to drive the learning of the metamodel. This can be useful to accelerate
the minimisation of the SUR criterion and eventually the whole learning step.

5.1.4 Integrated SUR criteria

Let us denote by Xaug = (X, Y) ∈ X× R the random vector with distribution conditional
on Fn, µXaug

n,q , such that:

dµXaug
n,q (x, y) = 1y>qdµξ(x)

n (y)dµX(x)
αn

. (5.15)

En [α2] can be rewritten:

En

[
α2
]

=
∫

X2
Pn [ξ(x1) > q, ξ(x2) > q] dµX(x1)dµX(x2)

= αn

∫

X2×R
Pn [ξ(x2) > q | ξ(x1) = y] dµXaug

n,q (x1, y)dµX(x2).
(5.16)

Eventually the criterion Jαn,n+r can be rewritten:

Jαn,n+r(x∗) = αn

∫

X2×R

(
pqn(x2 | x1, y)− pqUn+r(x2 | x1, y)

)
dµXaug

n,q (x1, y)dµX(x2) (5.17)

with:

pqn(x2 | x1, y) = Pn [ξ(x2) > q | ξ(x1) = y]
pqUn+r(x2 | x1, y) = Pn

[
U

(2)
n+r > q | X1 = x1,X2 = x2, U

(1)
n+r = y

]
.

For JΓ
n,n+r, and using Eq. (5.12), it reduces to:

JΓ
n,n+r(x∗) = αn

∫

X×R

(
1− pqUn+r(x | x, y)

)
dµXaug

n,q (x, y). (5.18)

On the one hand both Eqs. (5.17) and (5.18) are expressed as the product of αn (the
sought probability) and an integral which can be seen as an error term for the level q.
Indeed in the estimation of the criterion, only the integral part depends on the proposed
batch x∗.

On the other hand methods such as 2SMART [Deheeger, 2008, Bourinet et al., 2011]
or BSS [Li et al., 2012, Bect et al., 2016] propose to use a Subset Simulation algorithm
(see Section 1.3.2) to progressively learn the model on a sequence of increasing thresholds

138

5.1. Rare event simulation

such that the failure domain is iteratively approached but never corresponds to an extreme
event (see Section 2.3.3). These algorithms have shown good practical results. However
they suffer from the same limitations as the original Subset Simulation algorithm: choice of
the thresholds, parallelisation, optimality... Eventually they learn a sequence of thresholds
which are useless in the end for the quantification of the final estimator. Finally the
question of the computational load for each intermediate threshold is an open issue.

The point process framework appears here as a good theoretical tool to integrate these
empirical improvements into a well-defined algorithm. Indeed, let us denote by

hαn,n+r(q,x∗) =
Jαn,n+r(x∗)

αn
(q) (5.19)

hΓ
n,n+r(q,x∗) =

JΓ
n,n+r(x∗)
αn

(q) (5.20)

the error term of the model according to each one of the two criteria.
In the Poisson process framework, a natural idea to assess the global precision of the

model over the whole safety domain is to integrate1 these quantities as function of q against
the mean measure λn of the Poisson process associated with Y conditional on Fn. If one
considers that the metamodel should be accurate over the whole interval (−∞, q], one can
define:

Iαn,n+r(x∗) =
∫

R
1y≤qh

α
n,n+r(y,x∗)dλn(y) (5.21)

IΓ
n,n+r(x∗) =

∫

R
1y≤qh

Γ
n,n+r(y,x∗)dλn(y). (5.22)

Then the Campbell’s Theorem (see Section 4.2.2) can be applied to estimate Eqs. (5.21)
and (5.22):

̂Iαn,n+r(x∗) =
∑

i≥1
hαn,n+r(Yi,x∗)1Yi≤q =

∑

i≥1

Jαn,n+r(x∗)
αn

(Yi)1Yi≤q (5.23)

̂IΓ
n,n+r(x∗) =

∑

i≥1
hΓ
n,n+r(Yi,x∗)1Yi≤q =

∑

i≥1

JΓ
n,n+r(x∗)
αn

(Yi)1Yi≤q (5.24)

where (Yi)i≥1 are the arrival times of a Poisson process associated with Y conditional on
Fn, i.e. with conditional distribution µYn such that:

dµYn (y) =
∫

X
dµξ(x)

n (y)dµX(x).

In other words, these criteria write as the sum of the point-wise usual criteria over the
states of the Poisson process. It means that it considers the precision of the metamodel
for each level used for the conditional simulations. In the end, this quantity quantifies the
variance increase in the generation of the counting random variables due to the use of a

1the original idea of integrating a SUR criterion comes from Julien Bect.

139

Part II, Chapter 5 – Rare event simulation with random processes

random process instead of a deterministic code g.
More precisely, using the expression of dλn defined in Section 4.2.2, one has:

dλn(y) = dµYn (y)
αn

so that the criteria rewrite:

Iαn,n+r(x∗) =
∫

R
1y≤q

Jαn,n+r(x∗)
α2
n

(y)dµYn (y) (5.25)

IΓ
n,n+r(x∗) =

∫

R
1y≤q

JΓ
n,n+r(x∗)
α2
n

(y)dµYn (y). (5.26)

Especially, for r = 0, Jαn,n+r = varn [α] and these integrated criteria appear as the average
of the squared coefficient of variation (or an upper bound) of α over (−∞, q]:

Iαn,n =
∫

R
1y≤q

varn [α]
En [α]2

(y)dµYn (y).

This is consistent with the observation that the point process framework not only produces
an estimator of the sought probability P [Y > q] but of the whole cdf of Y over (−∞, q]
(see Section 3.3.1). The numerical examples of Section 5.3 will illustrate the behaviour of
these new SUR criteria. They appear to be more robust, especially for extreme events,
but also more computationally demanding in computational time.

5.2 Algorithms

Algorithms presented in Appendix A for parallel Poisson process generation and probability
estimation can be used directly. The only difference stands in the sampling of Y : in the
deterministic case, one draws X to fully determine Y while in the random case, Y given X
is a random variable with distribution µξ(X) (which is Gaussian if ξ is a Gaussian process)
and has to be sampled too.

We focus here on the estimation of the SUR criteria as well as on the workflow of an
algorithm combining the point process framework and SUR strategies.

In all this section, we consider that one can generate iid. Poisson processes associated
with Y . Appendix A Section A.2 gives all the details on practical parallel implementation
for this generation. Furthermore, for the sake of completeness we recall the estimator α̂n
built from N iid. Poisson processes:

α̂n =
(

1− 1
N

)M̄q

with M̄q =
N∑
i=1

M i
q the sum of the N iid. counting random variables of the number of

140

5.2. Algorithms

events before q on each Poisson process.

5.2.1 SUR criteria estimation

We first address the issue of estimating Jαn,n+r and JΓ
n,n+r for given n ≥ 0 and r ≥ 0. In

the sequel we assume that NSUR ≥ 1 iid. Poisson processes associated with a random
variable with distribution µYn have been generated until state q.

Let (Xi, Yi)NSUR
i=1 be the NSUR iid. samples with distribution µXaug

n,q (see Eq. 5.15). In
other words (Yi)NSUR

i=1 are the NSUR first states above q of the NSUR Poisson processes and
(Xi)NSUR

i=1 are the NSUR samples in X such that for each i ∈ J1, NSURK, Yi was sampled
∼ µξ(Xi)

n .
Even though Jαn,n+r depends on En [α2], this quantity is not required to solve the

minimisation problem:

argmin
(xn,··· ,xn+r)∈Xr

Jαn,n+r(xn, · · · ,xn+r). (5.27)

However we first give an algorithm for estimating En [α2], which can be useful to estimate
the conditional variance at a given iteration.

Algorithm 9 Point process based estimation of En [α2] (see Eq. 5.16).
Require: NSUR iid. Poisson process associated with Y
Require: α̂n an estimator of αn

Get (Xi, Yi)NSUR
i=1 the NSUR iid. samples ∼ µXaug

n,q . first states of the Poisson processes
above q
Generate (Xi

2)NSUR
i=1 iid. samples ∼ µX

3: for i = 1..NSUR do
get mi and σ2

i the mean and variance of a Gaussian rv with distribution ξ(Xi
2) |

Fn, ξ(Xi) = Yi

end for
6: return sαn(q) = 1

NSUR
×

NSUR∑
i=1

(1− Φ(q|mi, σ
2
i)). Φ(·|m,σ2) is the cdf of a rv N (m,σ2)

return α̂n × sαn(q)

We present in Algorithm 10 how to estimate Jαn,n+r assuming that estimators of αn
and En [α2] are available. Note however that these quantities are not necessary to solve
the optimisation problem (5.27).

We also give the algorithm for estimating JΓ
n,n+r. As for Jαn,n+r, it depends on αn but

this quantity is not necessary to solve the optimisation problem (5.28):

argmin
(xn,··· ,xn+r)∈Xr

JΓ
n,n+r(xn, · · · ,xn+r). (5.28)

141

Part II, Chapter 5 – Rare event simulation with random processes

Algorithm 10 Estimation of Jαn,n+r(xn, · · · ,xn+r) (see Eq. 5.17).
Require: NSUR iid. Poisson process associated with Y
Require: α̂n an estimator of αn
Require: Ên [α2] an estimator of En [α2] . got from Algorithm 9

Get (Xi, Yi)NSUR
i=1 the NSUR iid. samples ∼ µXaug

n,q . first states of the Poisson processes
above q
Generate (Xi

2)NSUR
i=1 iid. samples ∼ µX

3: for i = 1..NSUR do . see Eq. (5.11)
get mi and σ2

i the mean and variance of a Gaussian rv with distribution U (2)
n+r |

Fn,X1 = Xi,X2 = Xi
2, U

(1)
n+r = Yi

end for
6: return sαn,n+r(q) = 1

NSUR

NSUR∑
i=1

(1− Φ(q|mi, σ
2
i)) . Φ(·|m,σ2) is the cdf of a rv

N (m,σ2)
return Ên [α2]− α̂n × sαn,n+r(q)

Algorithm 11 Estimation of JΓ
n,n+r(xn, · · · ,xn+r) (see Eq. 5.18).

Require: NSUR iid. Poisson process associated with Y
Require: α̂n an estimator of αn

Get (Xi, Yi)NSUR
i=1 the NSUR iid. samples ∼ µXaug

n,q . first states of the Poisson processes
above q
for i = 1..NSUR do . see Eq. (5.13)

3: get mi and σ2
i the mean and variance a of Gaussian rv with distribution U (2)

n+r |
Fn,X = Xi, U

(1)
n+r = Yi

end for
return sΓ

n,n+r(q) = 1
NSUR

NSUR∑
i=1

Φ(q|mi, σ
2
i) . Φ(·|m,σ2) is the cdf of a rv N (m,σ2)

6: return α̂n × sΓ
n,n+r(q)

5.2.2 Integrated SUR criteria estimation

Thanks to the Campbell’s theorem, the integrated SUR criteria are estimated with a
discrete almost surely finite sum of standard SUR criteria over the states of the Poisson
process (see Eqs. (5.23) and (5.24)). Furthermore the renewal property of the Poisson
process insures that for all y ∈ R, the first event of the Poisson process after y is an iid.
sample with distribution µYn (· | Y > y).

142

5.2. Algorithms

Eventually, it all comes down to applying to each state of the superposed Poisson
process with parameter NSUR Algorithms 9, 10 or 11 with q replaced with the states of
the Poisson process and the iid. population of size NSUR rebuilt as explained above. Then
all these criteria are summed.

Comparing to Multilevel Splitting based learning approaches, there is no arbitrary
choice of the thresholds and the criterion favours no level. Furthermore it considers all the
levels simultaneously and not sequentially, which allows for going back to more probable
regions if it appears that they are not well known. For the sake of clarity, we detail these
operations in Algorithms 12 and 13.

Algorithm 12 Estimation of Iαn,n+r(xn+1, · · · ,xn+r) (see Eq. 5.21).
Require: NSUR iid. Poisson process associated with Y

Get (Yi)M̄q

i=1 the superposed Poisson process . YM̄q
is the last state before q

foreach i ∈ J1, M̄qK do . this can be done in parallel
3: Get the NSUR iid. population with distribution µYn (· | Y > Yi)

Get sαn(Yi) with Algorithm 9
Get sαn,n+r(Yi) with Algorithm 10

6: end foreach
return

M̄q∑
i=1

(
sαn(Yi)− sαn,n+r(Yi)

)

Algorithm 13 Estimation of IΓ
n,n+r(xn+1, · · · ,xn+r) (see Eq. 5.22).

Require: NSUR iid. Poisson process associated with Y
Get (Yi)M̄q

i=1 the superposed Poisson process . YM̄q
is the last state before q

foreach i ∈ J1, M̄qK do . this can be done in parallel
3: Get the NSUR iid. population with distribution µYn (· | Y > Yi)

Get sΓ
n,n+r(Yi) with Algorithm 11

end foreach
6: return

M̄q∑
i=1

sΓ
n,n+r(Yi)

We insist on the fact that these algorithms may seem a little bit complex at first glance.
This is because we manipulate iid. Poisson processes and have to specify each time the
indices. In any practical implementation, the random walks would be stored as matrices
and vectors and direct manipulation of all states of all Poisson processes be done with
matrix computation.

143

Part II, Chapter 5 – Rare event simulation with random processes

5.2.3 Bayesian Moving Particles
We are now in position to derive a standard framework for what we call a Bayesian Moving
Particles algorithm, in reference to [Moving Particles, Walter, 2015a] where we studied the
parallelisation of the Last Particle Algorithm presented in Appendix A.

The basic idea is to iteratively generate NSUR ≥ 1 iid. Poisson processes, to estimate
one of the above mentioned SUR criteria and to train the model with the r selected
samples.

Algorithm 14 Bayesian Moving Particles
Require: g . the numerical code
Require: q ∈ R | P [g(X) > q] > 0 . the threshold defining safety/failure domain
Require: NDoE . the size of the first DoE (see Section 2.2.1)
Require: Niter . a total number of iterations
Require: r . the number of points added at each iterations
Require: NSUR ≥ 1 . the number of Poisson processes for the SUR criterion
Require: δ . the target c.o.v of the estimator

Get a first DoE of size NDoE

n← NDoE

3: Get ξ | Fn the conditional distribution
while n < Niter do

r ← min(r,Niter − n)
6: Generate NSUR iid. Poisson processes conditional on Fn

Get α̂n
Minimise the SUR criterion . see Algorithms 10, 11, 12 or 13

9: Evaluate the model g onto the SUR minimiser(s)
Get ξ | Fn+r the conditional distribution
n← n+ r

12: end while
NBMP ←

− log α̂n
δ2

Generate NBMP iid. Poisson processes conditional on Fn
15: return α̂n . the target probability estimator

return (Yi)NBMP
i=1 . the NBMP Poisson processes

The few parameters used are:

NDoE the number of points for the first Design of Experiments (see Section 2.2.1). Usual
values are between 5 and 10 times the dimension of the input space X. Setting
a proper value for the first DoE is a common problem to all metamodel based
algorithms.

144

5.2. Algorithms

Niter this is the number of points added to the Design of Experiments during the learning
step such that the total number of calls to the model g amounts to NDoE + Niter.
This number is machine rather than algorithm dependent. In a practical setting, one
knows in advance how many evaluations of g will be possible.

r this is the number of points added to the training set at each iterations. According to
Remark 2.1 this is more a machine dependent parameter, precisely the number of
parallel calls to g one can afford.

NSUR this is the number of Poisson processes used for the refinement step, i.e. the number
of Poisson processes used for the SUR criterion estimation. This does not require
any call to the computer code g.

δ this is the targeted coefficient of variation of the final estimator. Note that if the model
error is still dominant (see Section 5.1.4 and numerical results of Section 5.3.2) then
the relative Root Mean Squared Error (rRMSE) of the estimator will be greater.

Another tough problem not yet addressed here is the minimisation of the SUR criterion.
Indeed, if the point process framework allows for an easy point-wise evaluation of the
criterion, solving the minimisation problem when the dimension gets relatively high
(d ≈ 10) can become tedious. In this context, and following similar strategies from [Bect
et al., 2012, Chevalier et al., 2014, Bect et al., 2016] we suggest to perform a discrete
search over the states of the superposed Poisson process with parameter NSUR. Hence this
parameter NSUR will serve to determine the precision of the SUR criterion estimation and
is the size of the population onto which the discrete search is performed. The complexity
of the SUR criterion estimation then typically scales like NSUR

2| log p| for the usual SUR
criterion and NSUR

3| log p|2 for the integrated ones:

• there are on average −NSUR log p states of the superposed Poisson process before q;

• the estimation of a usual SUR criterion makes an average over NSUR iid. samples;

• the estimation of an integrated SUR criterion makes on average −NSUR log p estima-
tions of a usual SUR criterion.

On our numerical experiments, it appears that the computational time of the SUR criterion
minimisation is driven by the computational time of the numerical approximation of the
cdf of a standard Gaussian random variable. As a matter of fact with R base function
pnorm, we have:

u = runif(1e7)
(t <- system.time(pnorm(u)))

user system elapsed
0.698 0.039 0.776

145

Part II, Chapter 5 – Rare event simulation with random processes

On the other hand, with a complexity in NSUR
3| log p|2, the integrated SUR criterion

minimisation typically requires 102NSUR
3 calls to pnorm, i.e. 7.76× 103 seconds, or ≈ 129

minutes with NSUR = 1000. This computational time has to be compared with the one
of the numerical code g. In the end, this latter should be several order of magnitudes
greater to justify such a complexity for the SUR criterion estimation. For moderatly long
computational codes such as the one we will use in Section 5.3.3 this is not the case.

To circumvent this limitation, we suggest to either fix the number of Poisson processes
used for the estimation to a given constant NSUR, PPP or to use approximated criteria which
involve less calls to pnorm. In the first case the complexities hence become (−NSUR log p)×
NSUR, PPP for the usual SUR criterion and (−NSUR log p)× (−N2

SUR, PPP log p) for the inte-
grated one. These values increase linearly with NSUR and are well-suited for parallelisation:
the wall-clock time of the algorithm can remain the same by increasing the computational
resources as much as NSUR the parameter driving the minimisation of the SUR criterion.
The other alternative is to use a criterion which does not need to call pnorm. For instance,
similarly to the Integrated Mean Squared Error (see Section 2.2.2) we propose to use the
average of the updated kriging variances; or to make a direct average of the normalised
random variables involved in Algorithms 11 and 10:

s̃αn,n+r(q) = 1
NSUR

NSUR∑

i=1

mi − q
σi

s̃Γ
n,n+r(q) = 1

NSUR

NSUR∑

i=1

q −mi

σi

.

Eventually the true quantities JΓ
n,n and IΓ

n,n can still be evaluated at each iteration and
give an insight on the learning of the model.

5.3 Numerical results
Our goal is to apply the algorithms described in Section 5.2 to the problem of the estimation
of the reliability of a containment vessel subject to dynamic pressure loading. We first
show the behaviour of the new SUR criterion on academic test cases. Then we illustrate
the trade-off between model error and statistical error presented in Section 5.1.4. Finally,
we handle the real problem of estimating the probability of failure of the containment
vessel.

In all the following numerical examples, we consider the corresponding problem in the
standard space, i.e. with standard Gaussian input random variables. This lets us use the
direct transition kernel for conditional sampling presented in Section A.2.1. Especially
when the input parameters are not Gaussian, an iso-probabilistic transformation is done.

Furthermore, we start each algorithm with a first uniform Design of Experiments of
size 5d in a hypersphere as in [Dubourg, 2011]. The radius of the sphere is set 6.5 because
this corresponds to a probability of ≈ 10−6 for d = 8, the dimension of our numerical

146

5.3. Numerical results

code. Finally, the mean of the random process is enforced to be equal to the failure
threshold during the refinement step: this is to ensure that non-visited regions of the input
space will not be classified safe or failing while the random process has never visited them.
Concerning the hyperparameters of the Gaussian process, a plug-in approach is used: they
are estimated with Maximum Likelihood at each iteration.

5.3.1 SUR criteria

This section aims at illustrating the behaviour of the new SUR criterion proposed in Section
5.1.4. We focus directly on the criterion based on the upper bound of the conditional
variance (see Eqs. (5.12) and (5.26)). As explained by Chevalier et al. [2014], it leads to
similar performances as the criterion based on the conditional variance and is much easier
to estimate. Especially with the Poisson process framework its computation reduces to
an average of Gaussian one-dimensional cdf taken at some locations depending on the
Poisson process.

Non linear oscillator This test case in dimension d = 6 is presented in [Echard et al.,
2013, Bect et al., 2016]. The input variables are independent Gaussian random variables
with parameters described in Table 5.1. Since we want to work with X in the standard
Gaussian input space, appropriate rescaling is done before each call to the limit-state
function. This limit-state function is:

g : x ∈ R6 7→ g(x) = 3x4 − |
2x5

x2 + x3
sin

(
ω0x6

2

)
| (5.29)

with ω0 =
√

(x2 + x3)/x1.

Variable x1 x2 x3 x4 x5 x6

Mean 1 1 0.1 0.5 0.45 1
Standard deviation 0.05 0.1 0.01 0.05 0.075 0.2

Table 5.1: Distribution parameters of the Gaussian vector X = (x1, · · · , x6) ∈ R6 for the
non linear oscillator given in Eq. (5.29). The coordinates are independent.

The failure domain is defined as {x ∈ R6 | g(x) < 0}. We get a reference value for
the probability of failure P [g(X) < 0] with a run of the Subset Simulation algorithm
from R package mistral with N = 5 × 103. We found: p ≈ 1.54 × 10−8. As a matter
of comparison we also consider the non-linear oscillator in dimension d = 8 presented in
Section A.4.1 with reference value p ≈ 3.75× 10−7.

Four branches serial system We also present a 2 dimensional test case for illustrative
purposes. This example comes from [Waarts, 2000] and is defined in the two dimensional

147

Part II, Chapter 5 – Rare event simulation with random processes

standard Gaussian input space X ∼ N (0, I2) with a limit-state function g as follows:

g : x ∈ R2 7→ min





3 + (x1 − x2)2

10 − |x1 + x2|√
2

−|x1 − x2|+
6√
2

. (5.30)

The reference value for P [g(X) < 0] and P [g(X) < −4] are computed with R package
mistral using a single run of the function MP implementing the algorithms described in
Appendix A, with N = 5× 103. We got: P [g(X) < 0] ≈ 4.59× 10−3 and P [g(X) < −4] ≈
5.98× 10−9.

We run the Bayesian Moving Particle algorithm with NSUR ∈ {100, 500, 1000} and
NSUR, PPP = 100 to assess the impact of NSUR on the learning curve of the model. While
the integrated SUR criterion IΓ

n,n+1 is used to select the next sample at each iteration, we
present in Figure 5.1 the evolution of both hΓ

n,n = JΓ
n/αn = Γnαn and IΓ

n,n quantifying the
error of the model at a given iteration.

On the one hand the learning curves of both IΓ
n,n and hΓ

n,n seem to have the same
behaviour, which does not depend on the size NSUR of the number of Poisson processes
used for the refinement step. While this value NSUR should depend on the dimension
of the problem as well as the complexity of the limit-state function, this means that it
can eventually remain low to save computational time for the SUR step. On the other
hand, the speeds of convergence are very different in the three test cases: the non-linear
oscillator in dimension 6 is learnt much faster than the two other ones. Especially, the
non-linear oscillator in dimension 8 shows a very slow convergence of the criteria and
requires hundreds of calls. As a matter of fact, the MetaIS method (see Section 5.1.2
and Dubourg [2011]) requires ≈ 700 samples to produce an estimator with a estimated
coefficient of variation of 5% [see Dubourg, 2011, Table 5.4].

One can also notice that the estimation of the relative usual SUR criterion JΓ
n,n/αn =

hΓ
n,n is less robust than the one of IΓ

n,n. Indeed it has lower values and with a small NSUR

the variance of its estimation becomes important. This is especially visible in Figure
5.1a. Furthermore in each one of the test cases, IΓ

n,n seems to be approximately 10 times
bigger than hΓ

n,n. Indeed, recall that IΓ
n,n is estimated with a sum of several hΓ

n,n over the
states of the Poisson process. Moreover, there are on average − log p states before q. With
p ≈ 10−5, we have − log p ≈ 11.51, which is consistent with this empirical difference in the
orders of magnitude of IΓ

n,n and hΓ
n,n.

As a matter of illustration, we present in Figure 5.1 the models obtained after Niter = 50
iterations of BMP with NSUR = 1000 for the 2−dimensional test case. Figures 5.1a and
5.1c are obtained using the usual SUR criterion JΓ

n,n+1 focusing only on the boundary
{x ∈ R2 | g(x) = q}. Figures 5.1b and 5.1d used the integrated criterion IΓ

n,n+1.
While the usual SUR criterion performs well when the probability is moderately low

(see Figure 5.1a) because it precisely samples on the boundary {x ∈ R2 | g(x) = 0}, it
totally misses a part of the failure domain in the second case (Figure 5.1c). Here the first

148

5.3. Numerical results

0.1

10

25 50 75 100 125
NDoE

Va
lu

e

NSUR

100

500

1000

Criterion
IΓ

n,n

hΓ
n,n

(a) Non-linear oscillator in dimension 6 defined in Eq. (5.29).

1

10

0 250 500 750 1000
NDoE

Va
lu

e

NSUR

100

500

1000

Criterion
IΓ

n,n

hΓ
n,n

(b) Non-linear oscillator in dimension 8 presented in Section A.4.1.

Figure 5.1: Evolution of the criteria hΓ
n,n = JΓ

n,n/αn and IΓ
n,n presented in Eqs. (5.20) and

(5.22) against the size of the Design of Experiments (DoE) for one single run of the BMP
algorithm. The DoE is built with an initial uniform sampling of size 5d in a hypersphere
of radius 6.5. It is then iteratively updated with a SUR strategy: the criterion IΓ

n,n+1
is minimised at each iteration in a discrete population generated by the NSUR Poisson
processes. For each tried sample, the value of IΓ

n,n+1 is estimated with only NSUR,PPP = 100
Poisson processes to reduce the computational time.

DoE does not find the failure domain and the criterion JΓ
n,n+1 is very unlikely to recover it

in totality because if focuses on the already known boundary.
On the other hand the integrated SUR criterion IΓ

n,n+1 covers the whole safety domain
{x ∈ R2 | g(x) > q} in both cases and is able to recover the four branches of the boundary
(Figure 5.1d) in the extreme case as well as on the moderate one. In this spirit we present
in Figure 5.2 the empirical cdf estimated with both runs of BMP with the integrated
SUR criterion, i.e. the one with q = 0 and the one with q = −4. We compare these

149

Part II, Chapter 5 – Rare event simulation with random processes

0.1

1

10

30 60 90
NDoE

Va
lu

e

NSUR

100

500

1000

Criterion
IΓ

n,n

hΓ
n,n

(c) 2 dimensional four-branches serial system defined in Eq. (5.30).

Figure 5.1 (continued): Evolution of the criteria hΓ
n,n = JΓ

n,n/αn and IΓ
n,n presented in

Eqs. (5.20) and (5.22) against the size of the Design of Experiments (DoE) for one single
run of the BMP algorithm. The DoE is built with an initial uniform sampling of size 5d
in a hypersphere of radius 6.5. It is then iteratively updated with a SUR strategy: the
criterion IΓ

n,n+1 is minimised at each iteration in a discrete population generated by the
NSUR Poisson processes. For each tried sample, the value of IΓ

n,n+1 is estimated with only
NSUR,PPP = 100 Poisson processes to reduce the computational time.

empirical cdf to the one got from a single run of the Poisson process estimator on the true
model g with N = 5000, which stands for a reference cdf . These empirical cdf are in good
agreement with the reference one. Especially we found the following Kolmogorov–Smirnov
statistics:

sup
y≥0
|FNiter=50,q=0(y)− F (y)| = 4.42× 10−2

sup
y≥−4
|FNiter=50,q=−4(y)− F (y)| = 0.13

sup
0≥y≥−4

|FNiter=50,q=−4(y)− F (y)| = 2.83× 10−4

sup
−2≥y≥−4

|FNiter=50,q=−4(y)− F (y)| = 1.6× 10−6

with FNiter,q the empirical cdf built with the BMP algorithm run with Niter iterations with
target probability P [g(X) < q]. The empirical cdf over [0,∞) is more precise because the
Niter samples are used to learn the true model g onto a smaller interval, precisely [0,∞)
instead of [−4,∞).

All together, these results suggest that the integrated relative SUR criterion IΓ
n,n+1

described in Eq. (5.22) is a robust criterion to drive the learning of the random process.
Especially it lets address extreme and non-extreme events in the same manner and is easily
estimated with the Poisson process framework.

150

5.3. Numerical results

-5

0

5

-5 0 5
x1

x
2

(a) Usual SUR criterion JΓ
n,n+I

-5

0

5

-5 0 5
x1

x
2

(b) Integrated SUR criterion IΓ
n,n+1

-5

0

5

-5 0 5
x1

x
2

(c) Usual SUR criterion JΓ
n,n+I

-5

0

5

-5 0 5
x1

x
2

(d) Integrated SUR criterion IΓ
n,n+1

Figure 5.1: 50 iterations of the SUR criteria JΓ
n,n+1 and IΓ

n,n+1 with NSUR = 1000. This
academic test case is given in Eq. (5.30). The first DoE is the same in both case,
represented with the green samples. For Figures 5.1a and 5.1b the target probability is
moderately low: P [g(X) < 0] ≈ 4.59 × 10−3. For Figures 5.1c and 5.1d it is extreme:
p = P [g(X) < −4] ≈ 5.98× 10−9.

5.3.2 Statistical error

We now focus on the probability estimation problem: instead of looking at the values
of the SUR criteria, we look at the evolution of the estimated probability (α̂n)NDoE+Niter

n=NDoE
.

We run 20 simulations of the BMP algorithm on the non-linear oscillator test case in
dimension d = 6 (see Eq. 5.29). We try it with NSUR ∈ {100, 1500, 3100, 6300, 9500}
and Niter = 120, so that the total number of calls to the limit-state function amounts to
NDoE +Niter = 30 + 120 = 150.

151

Part II, Chapter 5 – Rare event simulation with random processes

0

0.25

0.5

0.75

1

-2.5 0.0 2.5 5.0
y

P
[Y

<
y
]

(a) Normal scale

10−6

10−3

1

-2.5 0.0 2.5 5.0
y

P
[Y

<
y
]

Ecdf:
BMP(-4)

BMP(0)

Ref.

(b) Log scale

Figure 5.2: Empirical cdf of Y = g(X) with X ∼ N (0, I2) and g as in Eq. (5.30). Both
curves are built with a single run of BMP with q ∈ {0,−4}, NSUR = 1000 and Niter = 50,
i.e. a total number of calls to g equals to Niter + 5× 2 = 60. The reference cdf is got from
a single run of the Poisson process estimator on the true model g with N = 5000.

Figure 5.3 plots the relative Root Mean Square Error (rRMSE) of the estimator at each
iteration. It shows that the model error tends to vanish behind the statistical error: when
the DoE is small the model error is predominant. From one moment on, the statistical
error due to the estimation of the conditional expectation En [α] = Pn [Y < 0] becomes the
more important. Eventually with a constant NSUR this limitation cannot be overpassed:
even though the model is perfectly known (as in the deterministic case), the statistical
error remains (see Eq. 5.14).

We compare these results to the one found in [Bect et al., 2016] reported in Table 5.2
with the BSS algorithm. Indeed BSS applies the Bayesian framework presented in Section
2.2.3 and used here to the Subset Simulation algorithm. The relation between the Poisson
process framework and the Subset Simulation methods lets assume that the results should
be similar.

Note that the BSS is implemented with an automatic stopping criterion and the
comparison thus cannot be done with constant number of calls to g. However, we can
still look at the precision reached when it stopped and compare it to the one we had after
the same number of iterations. Table 5.2 shows that even when looking at the worst case
for BMP, i.e. comparing the results of BSS to the ones with NSUR smaller for BMP, the
rRMSE are significantly lower for BMP. There is indeed an average increase of 40%, which
is in good agreement with the theoretical increase found between Subset Simulation with
p0 = 0.1 and the Poisson process estimator (see Sections 1.3.2 and A.3.1).

152

5.3. Numerical results

0.1

1.0

40 80 120
Ndoe

rR
M

SE
NSUR

100

1500

3100

6300

9500

(a) Raw results.

0.1

40 80 120
Ndoe

rR
M

SE

NSUR

100

1500

3100

6300

9500

(b) Smoothed results using local polynomial regression fitting (loess) [Chambers and Hastie,
1992].

Figure 5.3: relative Root Mean Squared Error (rRMSE) in the estimation of P [g(X) < 0]
with g defined in Eq. (5.29) and X a random vector with independent Normal coordinates
with parameters given in Table 5.1. The dotted horizontal lines stand for the true
achievable coefficients of variation, i.e.

√
− log p/NSUR. The plain lines oscillating around

them are the estimated coefficient of variations of the probability at each iteration, i.e.√
− log α̂n/NSUR.

Furthermore Figure 5.3 suggests that the estimated coefficient of variation at each
iteration does not depart much from its theoretical value with a perfect knowledge of the
model. This means that instead of choosing an arbitrary value for NBMP the number of
Poisson processes used for the final estimator, one can instead select a target value of the
squared coefficient of variation δ2

target. Then the final NBMP for probability estimation will
be given by: NBMP = − log ̂αNDoE+Niter/δ

2
target.

153

Part II, Chapter 5 – Rare event simulation with random processes

N (NSUR) # of calls rRMSE (BSS) rRMSE (BMP)

100 48 0.49
500 48 0.55
1000 51 0.35
1500 51→ 55 0.17→ 0.16
2000 55 0.23
3100 55→ 63 0.14→ 0.11
4000 63 0.17
6300 63→ 75 0.12→ 0.09
8000 75 0.13
9500 75 0.08

Table 5.2: Relative Root Mean Squared Error (rRMSE) in the estimation of P [g(X) < 0]
with g given in Eq. (5.29) and X in Table 5.1. Results for BSS are got from [Bect et al.,
2016]. In this latter case, the algorithm stops randomly according to a stopping criterion.
Thus the presented number of calls is an average result. Results for BMP are the same as
the ones in Figure 5.3.

5.3.3 Industrial problem

We now address the issue of estimating the reliability of a spherical containment vessel
subject to internal blast. This vessel is a spherical tank as presented in Figure 5.4. Further
technical details onto this problem can be found in [Defaux and Evrard, 2014].

Figure 5.4: Workflow of the simulation of the response of the spherical tank [Defaux and
Evrard, 2014].

154

5.3. Numerical results

Presentation of the problem The mechanical response (displacement, stress, strain)
of the tank is modelled with a coupling of two independent numerical codes: first a
hydrodynamic code M1 lets simulate the explosion of a bursting charge placed in the
center of the tank. This model uses a 2-dimensional Eulerian scheme. Then it outputs the
time-dependent distribution of the pressure at several spots on the tank localised by their
angle θ with respect to the vertical axis and for a given input vector x that characterizes
the dynamical loading, some material properties and the geometry (see Figure 5.4). These
distributions are then used as input of a structure codeM2. This second code simulates
the vibrations of the tank under a dynamic excitation and evaluates the displacement,
strain and stress tensors as functions of the time at each one of the above mentioned
locations. Figure 5.5 shows the dynamic load simulated by the first modelM1 while 5.6
represents the dynamical response t 7→ M2 ◦M1(x, t, θ) for given x and θ ∈ [0, π].

Quasi-static loadImpulsive load

P (t, θ)

E
xp

lo
si
ve

ch
ar
ge

experim
ental

furniture

ST0
ST1
ST2
ST3

Figure 5.5: Dynamic pressure at several locations of the tank got from the modelM1.

Finally we look at the cumulated equivalent plastic strain εeq
p over a given time range

[0, τ] using perfect elastoplastic strain stress curve to model the plastic behaviour of the
involved materials:

εeq
p (x, θ) =

∫ τ

0

√
2
3

.
ε (x, θ, t) : .ε (x, θ, t)dt (5.31)

with .
ε (x, θ, t) the derivative of the strain tensor against time and “:” standing for the

double dot product for tensors.
By introducing uncertainties in the input parameters x, the variability of εeq

p (x, θ) can
be quantified in terms of probability. The stochastic model used in the following of this
section is given in Table 5.3.

Especially here, we focus on the plasticity level at angle θ = 0 and the question is to
estimate the probability that it exceeds 2.5%, 5% or 10%. Y = εeq

p (X, 0) is therefore the

155

Part II, Chapter 5 – Rare event simulation with random processes

Figure 5.6: Illustration of the dynamic response of the tank under internal pressure.
Animated figure online.

Variable Phys. Meaning Distribution P1 P2

x1 Internal radius of the tank (m) Normal 0.720 0.005
x2 Thickness (m) Log normal 0.073 0.0015
x3 Scaling factor on pressure Weibull 24.95 1.022
x4 Scaling factor on time Weibull 24.95 1.022
x5 Young modulus of the tank (Pa) Log normal 2.1× 1011 2.1× 1010

x6 Elastic limit of the tank (Pa) Normal 7× 108 3× 107

x7 Young modulus of the tap (Pa) Log normal 2.1× 1011 2.1× 1010

x8 Elastic limit of the tap (Pa) Normal 8.60× 108 3× 107

Table 5.3: Stochastic model of the tank. For Normal and Log normal distributions, P1 is
the mean and P2 the standard deviation. For the Weibull distribution, P1 is the shape
parameter and P2 the scale parameter. The scaling factors x3 and x4 define the pressure
time history acting on the inner radius of the vessel (see the curve in Figure 5.5) . The
coordinates are independent.

real-valued random variable of interest and one indeed wants to estimate P [Y > 0.025],
P [Y > 0.05] and P [Y > 0.1]. The point process framework developed in Chapter 3 is
especially interesting in this configuration because it outputs an estimation of the cdf of
Y over (−∞, y] at the same cost as a punctual estimation of P [Y > y]. Hence running a
point process estimator until threshold q = 0.1 will directly output an estimator of the
three quantities, each one with known distribution.

156

5.3. Numerical results

Experimental setting The number of iterations is determined by the machine used.
The algorithm is run on a cluster with up to 2048 MPI threads and a time limit of 24
hours per job. On the one hand numerical benchmarks give that the minimal wall-clock
time for a call to the chained simulator is got when it is spread in parallel over 4 threads.
With this setting, it takes up to 5 minutes and requires 2 cores of 4Gb each per thread
for memory reasons. We noted however that this gain is not significant compared to the
computational time of the code using only 1 thread. On the other hand we can request
more threads for the computation of the Poisson process and the SUR criterion at each
iteration since these algorithms are massively parallel. In order to reduce to a minimum
this side computational load and according to the dimension of the problem (d = 8) we
generate the Poisson process by batches of size 20 (see the numerical study of Section
A.4.2).

Finally, since the 40 first samples of the DoE can be computed totally in parallel and
the gain in the computational time of the code with 4 threads is not very important, we
will use 40 MPI threads for our algorithm. This implies NSUR = 40× 20 = 800. We also
set NSUR, PPP = 100 as for the theoretical test cases. All together, this gives a complexity
of NSUR × (NSUR, PPP log p)2 for the estimation of the SUR criteiron. In addition to the
random time of the code, we then expect a duration of ≈ 5 to 10 minutes per iteration
and a total number of iterations ≈ 250. In any case, we set Niter =∞ and wait for the
job to be killed by the resource management utility of Airain because of the time limit.

The BMP algorithm is implemented in R using the parallel processing facility through
the packages doMPI, doParallel and foreach [Weston, 2015a,b,c].

Results Recall that the problem is to estimate in the same run the three quantities
P [Y > 0.025], P [Y > 0.05] and P [Y > 0.1] we first present in Figure 5.7 the evolution of
the criteria IΓ

n,n and hΓ
n,n representing the model error. The convergence of both criteria is

rather slow comparing to the one of the test cases (5.29) and (5.30) but of the same order
of magnitude as the one of the non-linear oscillator in dimension d = 8 (see Figure 5.1b).
We also show the evolution of the estimated standard deviation of α̂n. As for the previous
test cases, it quickly stabilises around what should be its theoretical value (unknown for
this real computer experiment).

Figure 5.8 gives the boxplots of the wall-clock time of the main steps of the BMP
algorithm. We can see that most of the time is spent in the evaluation of the limit-state
function, which is the goal of this kind of algorithms. Especially the wall-clock time
required by the generation of the Poisson processes is negligible, which means that this
step can easily be added to any other metamodel based approach at almost no cost to
estimate efficiently IΓ

n,n or hΓ
n,n for instance. As a matter of fact, we present in Table 5.4

the mean wall-clock time of these steps. Also we were finally able to make 219 iterations.
Finally we run a BMP algorithm without sampling but gathering all the different

numerical experiments done so far. Indeed in addition to the Niter = 219 iterations done

157

Part II, Chapter 5 – Rare event simulation with random processes

0.1

1

10

50 100 150 200 250
NDoE

Va
lu

e

Quantity
δn

IΓ
n,n

hΓ
n,n

Figure 5.7: Evolution of the SUR criteria IΓ
n,n and hΓ

n,n = JΓ
n,n/αn against the number of

points added to the Design of Experiments by minimising at each iteration IΓ
n,n+1. δn is the

estimated coefficient of variation such that δ2
n = − log α̂n/NSUR. The first 40 samples of the

DoE are drawn in a uniform hypersphere of radius 6.5. NSUR = 800 and NSUR, PPP = 100.

10

102

LSF PPP SUR
Quantity

W
al

l-c
lo

ck
tim

e
(s

ec
.)

Figure 5.8: Wall-clock time of the three main steps of the BMP algorithm run with 40
MPI threads: generation of the Poisson process (PPP), evaluation of the SUR criterion
(SUR) and call to the limit-state function (LSF).

we had available some previous computations and so a total database of 1375 data. In
other words we train the Gaussian process with the 1375 data on the tank and then only
run a Poisson process associated with Y given these data. While the first experiment
served the estimation of the learning curve of the tank, this run can give a sort of reference
value because it gathers much more information than only running the algorithm from
scratch.

Table 5.5 gives the estimated values of the three sought probabilities as well as their
coefficients of variation. Note that this latter value could be as small as desired since it

158

5.3. Numerical results

Operation Mean wall-clock time (s)

Generation of the Poisson process 10.37
Discrete minimisation of the SUR criterion 17.36

Evaluation of the limit-state function 287.867

Table 5.4: Mean wall-clock time of the three main steps of the BMP algorithm during the
estimation of the reliability of a spherical tank modelled with two independent numerical
codes (see Figure 5.4). The algorithm used 40 MPI threads.

only involves the simulation of Poisson processes associated with the augmented random
variable Y = ξ(X). On the other hand we have no possible estimation of the relative Root
Mean Squared Error of the estimators.

Probability Estimation Coef. of variation
P [Y > 0.025] 4.22× 10−2 0.18
P [Y > 0.05] 1.5× 10−3 0.26
P [Y > 0.1] 3.53× 10−6 0.35

Table 5.5: Estimated sought probabilities with NBMP = 102 Poisson processes with a
metamodel trained with NDoE = 1375 data.

We also present in Figure 5.9a the empirical cdf got from this run. In log-scale the
complementary cdf seems to be linear. Indeed, one can also look at the values of the
states of the superposed Poisson process against the number of iterations. This is shown in
Figure 5.9b. Eventually, one could conjecture that Y follows an exponential distribution
and estimate its parameter with a linear regression:

T = seq(Y)/N; lin.mod <- lm(Y~T); summary(lin.mod)

##
Call:
lm(formula = Y ~ T)
##
Residuals:
Min 1Q Median 3Q Max
-4.77e-03 -1.29e-03 7.30e-05 1.47e-03 4.05e-03
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.79e-03 1.16e-04 -24 <2e-16
T 8.61e-03 1.61e-05 534 <2e-16
##

159

Part II, Chapter 5 – Rare event simulation with random processes

10−4

10−2

1

0.000 0.025 0.050 0.075 0.100
y

P
[Y

>
y
]

(a) Empirical complementary cdf

0

2.5 × 10−2

5 × 10−2

7.5 × 10−2

0.1

0 4 8 12
i/N ≈ Ti = − log P [Y > Yi]

Y
i

(b) States (Yi)i of the superposed Poisson pro-
cess

Figure 5.9: Superposed Poisson process with parameter NBMP = 102 until threshold q = 0.1
associated with the cumulated equivalent plastic strain of the containment vessel. The
Gaussian process is trained with a legacy database of NDoE = 1375 samples.

(Intercept) ***
T ***

Signif. codes:
0 '***' 1e-03 '**' 1e-02 '*' 5e-02 '.' 0.1 ' ' 1
##
Residual standard error: 2.1e-03 on 1247 degrees of freedom
Multiple R-squared: 0.996,Adjusted R-squared: 0.996
F-statistic: 2.85e+05 on 1 and 1247 DF, p-value: <2e-16

In a first approximation it appears that the random variable could be approximated
with an Exponential random variable with parameter 1/(8.61× 10−3) = 116.188.

5.4 Conclusion
In this chapter we applied the point process framework to the case where the computer
code g is also modelled with a random process ξ. We show that compared with the usual
setting where g is deterministic, it only adds a dimension to the problem. Eventually all
the results derived in this deterministic setting apply directly on the augmented random
variable Y = ξ(X).

The point process framework hence appeared as an efficient tool to estimate P [Y > q]
and could be directly plugged into already existing algorithms such as the MetaIS method
or the AKMCS one. Especially when these methods have shown good results for the

160

5.4. Conclusion

learing step, it can be used in the end to produce advanced statistics, an estimation of the
cdf or a quantile for instance.

Considering SUR strategies, we defined a new SUR criterion, it is the integration of
the relative usual criterion for contour estimation against the distribution of the Poisson
process. Formally, this criterion appears as the average with respect to the distribution of
Y of the conditional variance of α as a function of q the sought level. This new criterion
seems more robust and especially allows for targeting extreme probability directly without
introducing an arbitrary sequence of thresholds as in multilevel splitting based algorithms.

Eventually on numerical examples it is visible that its convergence can be relatively
slow. However the generation of the Poisson process associated with Y not only serves the
estimation of the SUR criterion but can also be used to estimate the two criteria hΓ

n,n (or
JΓ
n,n) and IΓ

n,n giving indications on the current accuracy of the random process. In other
words even though one chooses another criterion for driving the learning of the metamodel,
hΓ
n,n and IΓ

n appear as interesting quantities to quantify the precision of the model.
At the cost of the generation of independent random variables with distribution µX ,

the Poisson process can also be used to estimate the conditional variance of α. However if
the sought probability is extreme this estimation may have a huge variance and further
simulations should be done. For instance it is possible to start over a new Poisson process
estimator to estimate the remaining conditional probability (see Eq. 5.16). This is let for
further developments. Also not addressed here is the definition of a stopping criterion
for the learning step. Indeed while we focused on the learning and considered that the
number of steps was given, in some setting one can simply look for a estimator with a
given precision. To this end the learning step should be stopped when the model error
becomes non significant compared to the targeted statistical error.

161

Part II, Chapter 5 – Rare event simulation with random processes

162

Conclusion and perspectives

This thesis addresses the issue of rare event simulation, more specifically the problem
of estimating extreme probability and quantile of the form p = P [Y > q] with Y a real-
valued random variable Y = g(X) (the output of a computer code for instance) with X
a random finite- or infinite dimensional random vector X ∈ X with known distribution
and g a deterministic black-box function. Also considered here are the problems of
estimating the quantile corresponding to a given probability p and the (conditional)
mean E [Y | Y > q]. These problems arise in many branches of the industry like in civil
engineering, telecommunication or finance.

The common setting of these applications is the use of complex numerical codes to
define the problem. Indeed the sought quantity corresponds to the determination of the
risk of a failure mode of the system modelled by the code: either the probability of failure
for a given security threshold q or the threshold q for a given acceptable risk p. These
codes are very time consuming. Yet they are required to simulate the random variable of
interest Y . Hence the considered statistics used for probability estimation should be very
greedy in the sense that they should minimise the variance of the estimator with respect
to N a total number of generated samples, i.e. a total number of calls to g.

In the rare event setting and when nothing is assumed about the behaviour of g, a
usual tool is the so-called Multilevel Splitting method. On the other hand when this
method still requires too much computational time, one often relies on surrogate models
of g. These models are cheap to evaluate but have to be trained to approximate well
(in a sense depending on the quantity of interest) the true model g. A specific class of
algorithms is the one using Kriging, and especially Gaussian Process regression. Recently,
both methods (advanced statistics and metamodeling) started being combined into the
same algorithm, producing promising practical results.

In this thesis we strived to develop a common theoretical framework to answer these
questions while embracing the more advanced developments on specific estimators. Instead
of considering the properties of one given algorithm, we started by defining a point process
associated with any real-valued random variable. Then we developed formal estimators
for probability, quantile and moment using independent and identically distributed (iid.)
replicas of such a process. We showed that these estimators were optimal (in terms
of variance against number of generated samples). We insisted on the fact that these
estimators appeared as a true counterpart of the usual Monte Carlo ones, but based on iid.
replicas of the point process defined in this thesis. In this spirit the statistical properties
of the probability and quantile estimators (bias, confidence intervals, limit distribution)
are truly similar to the ones of the crude Monte Carlo estimators; they can be obtained

163

Part II, Chapter 5 – Rare event simulation with random processes

directly by substituting 1/p for log 1/p in all the considered formulas. This is especially
interesting when p → 0. Indeed, we showed that the point process framework not only
lets estimate probabilities or quantiles but gives an estimation of the whole cumulative
distribution function (cdf) of Y .

Since these estimators are based on iid. replicas of a point process, they are intrinsically
parallel in the sense that they allow for an almost direct use of parallel processing to
be generated faster. Indeed manufacturers stopped building more powerful CPU about
10 years ago. Instead, they have been focusing on creating multi-core processors. This
paradigm shift is a main concern for defining new practical algorithms. For instance
theoretical optimal estimators which do not allow for the use of parallel computers may
become useless compared to more naive versions using parallel processing. In this thesis
we argued that a parallel estimator is an estimator which allows for the use of parallel
computing but has the same statistical properties with or without parallel computing. In
this spirit averaging several sequential estimators allows for using parallel facilities but is
not what we can call a parallel estimator, although it may turn out to be a good strategy
provided the estimators are unbiased.

We then developed the links between the theoretical parallel estimators and the ones of
well-known efficient algorithms. Especially we showed that the Last Particle Algorithm is
a particular non parallel implementation of our probability estimator and that our moment
estimator is an optimised (minimal variance and unbiased) version of the nested sampling
method. For this latter we were also able to address the issue of the termination rule
while keeping a parallel unbiased estimator. Concerning the quantile estimator, it is as far
as we know the only alternative to the crude Monte Carlo estimator for parallel quantile
estimation, thus allowing for a great saving in computational time for extreme quantile
estimation.

When the computational time of the computer is still too important for using the
above mentioned statistics, a common practice is to model it with a random process with
known distribution. We showed that the point process framework is well suited to handle
such a case. Especially probability, quantile and moment of the corresponding augmented
random variable (the random variable embedding the uncertainty on the computer code in
addition to the uncertainty on the input parameters) can be estimated exactly the same
way. Furthermore we defined new criteria for quantifying the quality of the metamodel over
an interval. While metamodel based algorithms for pointwise estimation of a probability
were already available, it is as far as we know the first framework for estimating quantile
and the cdf of the real-valued random variable integrating the uncertainty on the computer
code itself.

We argued that the estimators are well-defined, parallel and optimal in the sense above
mentioned. On the other hand, an optimal implementation (i.e. an algorithm giving
as output the sought quantity in the minimal wall-clock time) is a somehow different
question. While it is possible to show that a given estimator is optimal regarding its

164

5.4. Conclusion

variance against the number of generated samples, a practical implementation involves a
lot a side parameters and operations which can indeed dramatically improve or reduce
the performance of an estimator. Without underrating this question, we think that a
lot of machine-dependent parameters have to be taken into account to address this issue.
Depending on the machine used (CPU, GPU), the parallel framework (fork, socket cluster,
MPI), the linear algebra library, the programming language... some algorithms may
exhibit very strong or weak performances. As an illustration we found in our experiments
significant variations (up to 10 times) in the computational time of call to the numerical
approximation of the cdf of a standard Gaussian random variable depending on the
machine used (different laptops, university cluster, Airain supercomputer).

In this thesis we strived to cover the whole spectrum from the full theoretical definition
of the estimator to the effective implementation on supercomputers and development of
industrial R code. However it appears obvious that the finally adopted implementations
are very dependent to our setting. In this context it may be relevant to integrate in the
theoretical analysis of the estimator parameters representing the performances of the used
machine for the corresponding operations. This would let define a more practical oriented
notion of optimality.

In this context a setting not studied in this thesis is the use of not only one but
several random processes instead of the true heavy code g. This so-called multi-fidelity
framework allows for building an approximation of the computer code with several cheap
approximations. Each level of code has its own computational complexity and a trade-off
has to be found between learning of the model and computational time. For instance results
of Le Gratiet [2013] on sequential learning for multifidelity Gaussian process regression
could be applied to the rare event setting.

Finally we did not derive any stopping criterion for the enrichment step of an algorithm
combining Poisson processes and metamodeling. While this question can be of great
practical use, we emphasised instead the interest of using Poisson processes in addition to
metamodel based algorithms because they let estimate easily quantities already used in
other methods, especially the conditional expectation and SUR criteria. The question of
defining an optimal ready-to-use method with tuned parameters is let for further research.

165

Part III

Appendix

167

Appendix A

Parallel computation of the
estimators

A.1 Introduction
In Chapter 3 we have defined the point process framework for any real-valued random
variable Y . This framework lets obtain estimators of a probability p = P [Y > q] for a
given q ∈ R, (see Sections 3.3 and 3.5.2), a quantile q such that P [Y > q] = p for a given
p ∈ (0, 1) (Section 3.4) and of the expectation E [Y] (Chapter 4).

Especially some of these estimators (the probability and the moment estimators) had
already been proposed as estimators given by specific sequential algorithms, the Last
Particle Algorithm [Guyader et al., 2011] and the nested sampling method [Skilling, 2006]
respectively. Instead we insisted on the fact that these estimators were, indeed, not outputs
of specific algorithms but rather that the algorithms were particular implementations of
general well-defined estimators based on a point process associated to Y . We have argued
that this framework allows for parallel implementation of the above mentioned estimators
because they appear to be defined with iid. replicas of the increasing random walk (see
Section 3.2).

However, generating an increasing random walk requires to be able to perform condi-
tional simulations µY (· | Y > y) for any y ∈ R. While some specific tools may be used
depending on the setting of the problem [see for instance Coupling from the past, Propp
and Wilson, 1996] we focus here on general methods using tools defined in Section 1.3.3:
the Metropolis-Hastings method or the Gibbs sampler.

These conditional simulation tools use the convergence property of a Markov chain to its
unique invariant distribution to generate samples according to the conditional distributions.
Hence several transitions of such Markov chains are done to output only one sample: this
is referred to as a burn-in. These transitions serve both to reach the stationarity of the
Markov chain and to decorrelate the initial sample from the kept output. General values
for this parameter are between 10 and 20.

So these methods require an initial feasible state of the target distribution: if one
intends to generate a sample according to µY (· | Y > y) for a given y ∈ R, then one
requires to initiate the Markov chain with a sample Y ∗ > y. If one generates the increasing
random walk with non-strict inequality (see Section 3.5.1) the current state Yn can be
used as a seed to generate Yn+1 ∼ µY (· | Y ≥ Yn).

169

Part III, Chapter A – Parallel computation of the estimators

Despite this possibility, it is often preferable to use a starting point already following
the target distribution as the burn-in will then serve only the independence purpose and
eventually remain low. Remember that the renewal property of a Poisson process insures
that ∀y ∈ R, YMy+1 ∼ µY (· | Y > y), this can be done for instance by manipulating several
increasing random walks simultaneously. Basically at a given iteration, one can use the
states of the more advanced random walks as seeds for the conditional generation of the
other ones. Hence there is a trade-off between the parallel implementation of the increasing
random walk based estimators (i.e. generating the iid. random walks separately) and a
proper simulation of such random walks.

Finally, in our context Y = g(X) with X ∈ X a random finite- or infinite-dimensional
vector with known distribution µX and g : X→ R a performance function standing for the
computer code for instance. One does not have a generator of µY but instead one needs
to simulate X ∼ µX and then to compute Y = g(X). While the usual Splitting framework
focuses directly on the input X, the point process framework considers it only as a tool to
generate Y . Especially in this framework there is no reason that the number of particles
(Xi)ni=1 carried out by an algorithm be equal to the number N of generated random walks.

In Section A.2 we present different algorithms for generating several increasing random
walks in parallel, i.e. algorithms which can use parallel computing. Then we study in
Section A.3 the computing times of the proposed algorithms. Finally Section A.4 presents
a numerical study of the impact of the parallelisation of the probability and quantile
estimators on usual test cases. There it appears that no decay on the quality of the
estimators is found, which means that parallel computing can be applied and save a lot of
computational time.

A.2 Parallel algorithms
For defining our algorithms, we focus only on the number of simulated samples, i.e. the
number of calls to g. All other operations (comparisons, sorting, ...) are considered as free
(not time consuming) compared to the computing time of the computer code.

Furthermore, we present all algorithms in the non-strict case, i.e. with non-strict
inequalities. Algorithms for the strict case can be obtained by replacing all the ≥ with >.

A.2.1 Sampling conditional distributions
This is the main and only requirement of the increasing random walk. We present
here practical algorithms used to performed such sampling for both the static case, i.e.
X ∈ X ⊂ Rd and the dynamic one: X = (Xt)t ∈ X ⊂ (Rd)R. Both cases require an initial
state X feasible for the target distribution.

Dynamic case Recall that in this context, X ∈ X ⊂ (Rd)R is a random path (the
solution of a Stochastic Differential Equation for instance) and one seeks for estimating

170

A.2. Parallel algorithms

the probability that it enters a given set B before another set A. These sets are defined
with a measurable performance function Φ : Rd → R such that: A = {x ∈ Rd | Φ(x) ≤ 0}
and B = {x ∈ Rd | Φ(x) > 1}. Then a given trajectory X enters B before A if τB < τA

with τC a stopping time defined for any set C ⊂ Rd by:

τC = inf{t ≥ 0 | Xt ∈ C}.

Now let g : X → R be such that g(X) = sup
t∈[0,τA)

Φ(Xt) and Y = g(X), the sought

probability writes P [Y > 1]. With this setting the idea is to start from a trajectory going
at least as high as the current level, to replicate it until the first time it overpasses this
level, and then to simulate the dynamic of the Stochastic Differential Equation. This is
summarised in Algorithm 15.

Algorithm 15 Conditional sampling for Markov process: X ∈ X ⊂ (Rd)R

Require: y ∈ R . the current level
Require: X | g(X) ≥ y . initial state such that Y ≥ y

Find τ = inf{t > 0 | Φ(Xt) ≥ y}
Generate a new trajectory X∗ starting from Xτ

y∗ = sup
t∈[0,τA∪B]

Φ(X∗t)

return (X∗) and y∗

Static case Here X ∈ X ⊂ Rd and g is a complex computer code. We further assume
that X has a density π with respect to the Lebesgue measure: dµX(x) = π(x)dx. As
stated in Section 1.3.3, the conditional sampling can then be conducted in two steps: first
generate a sample according to µX , then evaluate g and accept the transition if it lies in
the right domain. In this context, the use of a transition kernel targeting µX instead of
the available generator of µX is made to benefit from the knowledge of a sample X already
in the right domain: if g has some regularity then it is expected that other good samples
can be found close to a first one. We give in Algorithm 16 a practical implementation of
the Metropolis-Hastings kernel with a symmetric proposal.

We recall also that for a standard Gaussian input space, a direct transition kernel is
available [Cérou et al., 2012], which is described in Algorithm 17.

Then let us denote by K a transition kernel with µX as stationary distribution, the
conditional sampling is done according to Algorithm 18.

Note that in Algorithm 18, using K(x, dx′) = µX(dx′) as a transition kernel amounts
to making a basic acceptance-rejection scheme for simulating above the given threshold y.

While the initial state can be the current state of the increasing random walk, it is
better to select it in a population already following the target distribution. This will
make the burn-in only serve the independence purpose and eventually approximate the

171

Part III, Chapter A – Parallel computation of the estimators

Algorithm 16 Metropolis-Hastings transition kernel
Require: X . an initial state
Require: σ > 0 . an exploration parameter
Generate U ∼ N (0, I) or U ∼ U

(
[−1, 1]d

)
. I is the identity matrix in dimension d

X∗ ← X + σU
Generate ρ ∼ U([0, 1])
if ρ > min (1, π(X∗)/π(X)) then

X∗ ← X
end if
return X∗

Algorithm 17 Transition kernel for standard Gaussian input space
Require: X . an initial state
Require: σ > 0 . an exploration parameter
Generate U ∼ N (0, I) . I is the identity matrix in dimension d
X∗ ← X + σU√

1 + σ2
return X∗

conditional sampling better. In other words, this means that one requires a sort of a
database containing such samples, available at each iteration of Algorithm 5. There could
be several ways of getting such a database, from previous sampling of Y to the use of a
pilot run of any algorithm mentioned so far (see Chapter 1). This database should contain:

(Xi)ni=1 n samples in the input space X;

(Yi)ni=1 the response of the code on these samples: Yi = g(Xi); and

(Y prev
i)ni=1 the level against which it has been generated.

Algorithm 18 Conditional sampling in the static case: X ∈ X ⊂ Rd

Require: K(·, ·) . a transition kernel for µX

Require: y ∈ R . the current level
Require: X0 and y0 = g(X0) . an initial state such that y0 ≥ y

Generate X∗ ∼ K(X0, ·)
Y ∗ ← g(X∗)
if Y ∗ < y then

X∗ ← X0 and Y ∗ ← y0

end if
return X∗ and Y ∗

172

A.2. Parallel algorithms

This last point is important because having Yi > y with y the current level one seeks to
sample above is not sufficient to insure that Yi follows the target distribution. Indeed if
one wants to start from sample following the target distribution, Yi is a possible starting
point iff. Y prev

i ≤ y ≤ Yi.
Furthermore a database can be augmented at each iteration by adding the points

generated by the algorithm itself. Especially all accepted transitions of the burn-in step
can be saved.

A.2.2 Batch simulation of random walks

When no pilot run nor database is available, there is an easy way to generate such a
database on-the-fly, it is by generating not only one random walk but a batch of Nbatch ≥ 1
random walks simultaneously. Then the less advanced point processes can use the more
advanced ones to pick a starting point into them. This raises several questions:

1. how does this deplete the parallel implementation of the estimators?

2. what should be the size of this batch?

3. how many increasing random walks are moved at each iteration? i.e. for how many of
the Nbatch random walks simulated in the same algorithm is the next state simulated?

4. how to select the initial state for conditional sampling?

Question 1 is very legitimate but there is no general answer to it. Indeed this is mainly
machine dependent: if the number of available cores nc ≥ 1 is such that nc < N the total
number of desired random walks, then even with a perfect conditional sampler there will
be sequentially computed. Also some parallel computing into each batch can be done (see
Algorithm 19). In this context Nbatch = dN/nce will certainly not decay the computing
performance. In many practical situations, one has N ≥ 103 while nc is of order 10 to 100.
So the response would be “as soon as Nbatch < N/nc there is no loss in computing time”,
and even if this is not the case, intra-batch parallelisation can be done to maximise the
benefit of multi-core computers. Moreover the problem is generally defined the opposite
way: given a number of cores nc and minimal batch size Nbatch, how many N can be
simulated?

This makes us come to question 2. Indeed the batch size will be somehow the size
of the database for conditional sampling (depending on point 3 and if all the generated
samples are saved). While in some settings the limit-state function may be very smooth,
the dimension of the input space will certainly be a lower bound for Nbatch: this parameter
can be seen as the size of a discretised version of the conditional truncated distributions.
The question can then be turned the other way around: what is the minimal sample size
required to pick a starting point into it for conditional simulation?

173

Part III, Chapter A – Parallel computation of the estimators

In this context, question 3 comes in mind. The number of random walks whose next
step is generated should be as large as possible given that the starting point is chosen
amongst a population large enough to approximate well the target distribution. Eventually
there is no reason to set this value greater than the number of available cores nc.

Concerning the last point, the starting point is often picked at random in the database,
but this can be restrained to the points not directly related to the current state of the
increasing random walk in order to limit the correlation between samples.

We give now in Algorithm 19 a general approach for batch generation of increasing
random walks taking into account these specifications. Then we will show how the Last
Particle Algorithm is only one possible easily implementable solution which falls into this
framework.

Line 9 of Algorithm 19 defines which and how many random walks will be updated
at a given iteration. This should depend on the number of samples available as starting
points in the database. This number should not be too low regarding the dimension of the
input space, otherwise the diversity of the population may decay quickly. Here one can
also include some other conditions mentioned above: card(ind) = nc for instance (see line
9 of Algorithm 19).

Then for each random walk selected in ind, one performs the conditional simulation
with b transitions of the Markov chain with the reversible kernel K. The selection of the
starting point at line 11 should be done according to the distribution of the sample. Some
other criteria can be taken into account here. For instance one may want to avoid to
pick a sample X∗ belonging to the same Markov chain used for the last generation of the
random walk.

Finally, the stopping condition of the algorithm is not defined. Depending on the
estimator used, the increasing random walks have to be generated either until a given
common threshold q ∈ R, or such that the total number of events of the superposed
process be equal to some prescribed value m ∈ N∗ as described in before.

A.2.3 Fixed threshold

For the estimation of p = P [Y > q] for a given q ∈ R, one requires to generate N iid.
increasing random walks until the first time after q, i.e. until they all overpass q. Then
the superposed process (i.e. the merged and sorted sequence of all the states of all the
random walks) will be complete until q.

In this case, the condition at line 8 of Algorithm 19 simply writes:

cond = min
i
Y i
ni
≤ q.

Algorithm 20 for probability estimation is a direct wrap-up of Algorithm 19 with this
stopping condition. Note that it is defined with non-strict random walks. If the strict

174

A.2. Parallel algorithms

Algorithm 19 Batch generation of increasing random walks
Require: Nbatch ≥ 1 . the number of simulated random walks
Require: K(·, ·) . a transition kernel
Require: b ≥ 1 . a burn-in parameter
Require: cond . a boolean checking a stopping condition

n = (ni)Nbatch
i=1 = (1, · · · , 1) . the number of simulated states of each random walk

M = (Mi)Nbatch
i=1 = (0, · · · , 0) . the counting rv for the Poisson correction

3: Generate iid. (Xi)Nbatch
i=1 according to µX

∀i ≤ Nbatch, Y
i
ni

= g(Xi) . first state of the Nbatch random walks
Generate iid. (U i

ni
)Nbatch
i=1 according to U([0, 1]) . for the Poisson correction

6: Y prev = (−∞, · · · ,−∞) . the first sampling is ∼ µY (· | Y > −∞)
db = [(Xi, Y

i
ni
, Y prev

i)Nbatch
i=1] . initialisation of the database

while cond do
9: Get ind ⊂ J1, NbatchK . the index of the random walks updated at this iteration

foreach j ∈ ind do . this can be done in parallel
Get (X∗, Y ∗) ∈ db a starting point

12: Y j
nj+1 ← Y ∗

do b times . conditional simulation
X∗tmp ∼ K(X∗, ·); Y ∗ = g(X∗tmp)

15: if Y ∗ ≥ Y j
nj
then

Y j
nj+1 ← Y ∗

add (X∗tmp, Y
∗, Y j

nj
) to db

18: X∗ ← X∗tmp

end if
end do

21: U j
nj+1 ∼ U([0, 1]) . for the Poisson correction

nj ← nj + 1; Mj ←Mj + 1
if Y j

nj
= Y j

nj−1 & U j
nj
< U j

nj−1 then
24: Mj ←Mj − 1 . transition refused for the Poisson correction

end if
end foreach

27: update cond
end while
return (Y i)Nbatch

i=1 . the Nbatch increasing random walks
30: return (Mi)Nbatch

i=1 . the Nbatch Poisson random variables

175

Part III, Chapter A – Parallel computation of the estimators

random walk is considered instead, line 10 should be modified accordingly:

p̂> =
∏

i

(
1− ri

N

)
.

Algorithm 20 Probability estimator
Require: q ∈ R | P [Y > q] > 0 . the common threshold
Require: Nbatch ≥ 1 . the number of random walks per batch
Require: k ≥ 1 . the number of batches

N ← kNbatch . the total number of simulated increasing random walks
do k times . this can done in parallel

3: Run Algorithm 19 with Nbatch and cond = min Y i
ni
≤ q

end do
(Y i)Ni=1 ← ((Y i)Nbatch

i=1 , · · · , (Y i)kNbatch
i=(k−1)Nbatch+1) . sequence of random walks

6: M̄≥
q =

N∑
i=1

(ni − 1) . the counting random variable of the superposed process

(M i)Ni=1 ← ((M i)Nbatch
i=1 , · · · , (M i)kNbatch

i=(k−1)Nbatch+1) . sequence of Poisson rv

Get (Yn)M̄
≥
q

n=1 the superposed process
9: r ← RLE((Yn)M̄

≥
q

n=1) . the Run-Length encoding, see Definition 3.4
return p̂≥ = ∏

i(N − 1)/(N − 1 + ri) . the MVUE of the probability
return p̂ = (1− 1/N)

∑
M i

. the pure Poisson estimator

A.2.4 Fixed number of terms
For the quantile estimator as well as for the mean estimator (nested sampling) one requires
indeed to simulate the superposed process until a given iteration m ∈ N∗. However
recover the full process with parameter N (the superposed process of N iid. increasing
random walks) until event number m requires to make sure that all the random walks
have overpassed a given state y ∈ R and that the number of events before that time y is
greater than m. In this context, the stopping criterion for Algorithm 19 becomes:

cond =
Nbatch∑

i=1

ni∑

j=1
1Y ij <ymin < m

with ymin = min
i∈J1,NbatchK

Y i
ni

the smallest farthest state of the Nbatch random walks.
Since Algorithm 19 allows for parallel computation at each iteration (see line 10) it is

a direct possible parallel algorithm for quantile estimation and for nested sampling (Ẑ,
see Section 4.3.1). However it is only sequentially parallel (as any Multilevel Splitting
methods) in the sense that it can only distribute the computing load of each iteration.
Apart from making an intensive use of inter-processes communication, which is more

176

A.2. Parallel algorithms

complicated and time consuming, it makes the algorithm wait for all the calculations to be
done before going to the next step. If the computing time of g is not deterministic, then it
means that the wall-clock time of each iteration is driven by the law of the maximum of k
realisations of the random time of g.

To circumvent this limitation we suggest a 2-passes algorithm: we run a first time
in parallel several Algorithms 19 with a fixed target number of events m0, then get the
farthest state reached and relaunch all the random walks until they reach it too. The
choice of this parameter m0 will be discussed in Section A.3.2. As a matter of fact, if the
target number of events is m and one runs k algorithms in parallel, then m0 = dm/ke
insures that the final number of events will be greater than m.

Algorithm 21 Parallel generation of a superposed point process for a given number of
iterations
Require: m . the target number of events of the superposed process
Require: m0 . the fixed number of events per Algorithm 19
Require: Nbatch ≥ 1 . the number of random walks per batch
Require: k ≥ 1 . the number of batches

do k times
Run Algorithm 19 with Nbatch and cond =

Nbatch∑
i=1

ni∑
j=1

1Y ij <ymin < m0

3: end do
qmax = max

l∈J1,kK
min

i∈J(l−1)Nbatch+1,lNbatchK
Y i
ni

. the farthest state of the k point processes
do k-1 times . no need to relaunch the farthest point process

6: Restart Algorithm 19 with cond = min Y i
ni
≤ qmax

end do
(Y i)Ni=1 ← ((Y i)Nbatch

i=1 , · · · , (Y i)kNbatch
i=(k−1)Nbatch+1) . sequence of random walks

9: return (Y i)Ni=1

A.2.5 Last Particle Algorithm
The Last Particle Algorithm is a specific implementation of the increasing random walk
for continuous random variables and so falls into the framework of Algorithm 19.

More precisely, it gives the following answers to the above mentioned questions:

batch size it is the total number of point processes wanted for the statistic considered,
i.e. Nbatch = N ;

moves per iteration only the less advanced point process is considered, so the name
Last Particle. Line 9 is then replaced by ind = argmini Y i

ni
.

database it is composed by the last state of the N − 1 other point processes.

177

Part III, Chapter A – Parallel computation of the estimators

While in its original formulation it was proposed to use the Last Particle Algorithm
directly without parallel computing, it is definitely possible to use it as the batch generating
algorithm process in Algorithms 20 and 21.

The main interest of this algorithm comes from the fact that at each iteration, it
generates only one sample, precisely the next state of the superposed process with parameter
Nbatch. Hence at any iteration one has directly the superposed process until this given
state. Furthermore the random number of iterations of the algorithm is driven by the law
of the counting random variable of the increasing random walk with parameter N .

Finally we stress out the fact that this property is to be found with Algorithm 19 as
soon as line 9 is replaced by:

ind = argmin Y i
ni
.

Algorithm 19 still carries much information: precisely it allows for handling potential
discontinuities in the cdf of Y and returns not only the states and the counting random
variable of the superposed process with parameter N but separately the states of the
Nbatch iid. (in the ideal case where the conditional sampling is perfect) point processes and
the corrected counting random variables (those ones following a Poisson distribution with
or without discontinuities). In other words it outputs Nbatch iid. random variables with
distribution described in Proposition 3.9 or 3.10 and Nbatch iid. Poisson random variables.
Usual statistical tests such as the χ2 tests (goodness-of-fit or independence) can be used
to verify this property.

For the sake of completeness, we give in Algorithm 22 the original Last Particle
Algorithm.

A.3 Wall-clock time
In this section we focus on a last particle implementation of Algorithm 19. We further
assume that the cdf of Y is continuous. In the following we consider the setting where
nc ≥ 1 cores are available and are used to generate in parallel nc Algorithms 19, each with
Nbatch point processes. This makes a total of N = ncNbatch generated point processes.

In all this section, the number nc of cores is supposed to be large.

A.3.1 Fixed threshold algorithm

We first focus on the wall-clock time of the probability estimator. We know that the
random number of iterations Niter of Algorithm 19 before it stops follows a Poisson law
with parameter −Nbatch log p. Note that considering a parallelisation at line 9 with k

generations at each iteration only changes the parameter of Niter: −(Nbatch/k) log p.
The wall-clock time is defined as the duration of the algorithm in real time (seconds,

minutes, etc.), it is the time spent by the user to get the result of the algorithm. In our
context where the main source of running time comes from the call to the computer code

178

A.3. Wall-clock time

Algorithm 22 Last Particle Algorithm
Require: N ≥ 1 . the number of increasing random walks
Require: b ≥ 1 . the burn-in parameter
Require: K(·, ·) . a transition kernel for µX

(q ∈ R and Niter =∞) or (q =∞ and Niter ∈ N)
M ← 0 . the number of event of the superposed process

3: Generate (Xi)Ni=1 iid. replicas of X ∼ µX

y← (g(X1), · · · , g(XN))
while min y < q & M < Niter do

6: M ←M + 1
i = argmin y
Get J ∼ U (J1, NK \ {i})

9: Xi = XJ ; yi = yJ

do b times
X∗ = K(Xi, ·)

12: y∗ = g(X∗)
if y∗ > yi then

Xi ← X∗; yi ← y∗

15: end if
end do

end while

g, we simplify the analysis by counting only the number of times g is called sequentially in
an algorithm and refer to this quantity as effective computing time.

The following proposition aims at giving the expected duration time of Algorithm 20.

Proposition A.1. Let tpar be the random variable of the effective computing time of the
probability estimator (Algorithm 20) with Nbatch point processes per algorithm and nc cores,
one has:

E [tpar] = b(log p)2

ncδ2


1 +

√√√√ ncδ
2

(log p)2

√
2 log nc + 1

b log 1/p


 (A.1)

with b the burn-in parameter and δ the coefficient of variation of the estimator.

Proof. Let N = ncNbatch be the total number of generated point processes and λ be
the parameter of the Poisson laws: λ = −Nbatch log p = −(N/nc) log p. The effective
computing time of Algorithm 20 will be the maximum of nc iid. Poisson random variables
with parameter λ.

In the extreme value theory framework, we are interested in the so called location
parameter bnc which drives the mean of the maximum of nc iid. random variables with

179

Part III, Chapter A – Parallel computation of the estimators

cdf F . It is the solution of the equation:

bnc = F−1
(

1− 1
nc

)
.

For the Normal distribution, we have:

bnc =
√

2 log nc + log log nc + log 4π
2
√

2 log nc
∼
√

2 log nc.

Furthermore, we know that Normal approximation of a Poisson distribution with parameter
λ is valid in the range (−

√
λ,
√
λ). Here, this means that as soon as

√
2 log nc <

√
λ, we

can use the approximation of the Poisson law by a Normal one’s to calculate the constant.
The practical values of Nbatch = N/nc ≈ 101, − log p ≈ 101 and nc ≈ 102 allow us to make
the approximation:

P(λ) ∼ N (λ, λ) .

Let Nmax be the random variable of the maximum of nc iid. standard Gaussian variables.
The total number of calls is the sum of the Nbatch initial calls to the limit-state function
and the number of iterations. The former are ready made from the simulator of µX while
the latter require the Markov chain drawing; thus we have:

E [tpar] = E
[
b(Nmax

√
λ+ λ) +N/nc

]
≈ b

(
N

nc
log 1/p+

√
N

nc
log 1/p

√
2 log nc

)
+ N

nc

and so in terms of coefficient of variation:

E [tpar] = b
(log p)2

ncδ2 + b
| log p|
δ

√
2 log nc
nc

+ − log p
ncδ2 .

Hence we can see that with an embarrassingly parallel implementation, the expected
duration, i.e. here the expected longest sequence of calls made by a computational unit
(a core, a thread, a node, ...) is the sum of the mean of the Poisson random variable of
the number of iterations per Algorithm 19 (the number of events before the considered
threshold) and a term due to the extreme value theory: the algorithm stops when the
longest sequence is done.

This additional term due to the full parallelisation could drop with a dynamic allocation
of the computational resources. Indeed, considering that Poisson dsitributions of the
random number of events are symmetrically distributed, there will be as many shorter
than longer algorithms comparing to the reference value (the mean) −N/nc log p, so that
the computational resources liberated by the first ones could be allocated to the second
ones, and finally approximately compensate each other.

In comparison, a classical Subset Simulation method does not allow for embarrassingly
parallel implementation. Rather it sequentially distributes the load of each iteration. Then

180

A.3. Wall-clock time

the running time is driven by the law of the maximum of N/nc calls to the code g, times
the number of steps, i.e. almost surely log p/ log p0. In a last particle setting, this law of
the maximum of the N/nc calls to g disappears since calls are made sequentially and so in
expectation one can retain only the expected computational time of g.

Finally for a first comparison with classical Multilevel Splitting methods one can retain:

tpar = b(log p)2

ncδ2 . (A.2)

In Multilevel Splitting algorithms, there are N samples generated initially and then
N(1 − p0) regenerated at each iteration. If one considers that the running time of g is
constant, the computational time writes as follows:

tMS = N

nc
+ b log p

log p0
cb
[
N(1− p0)

nc
∨ 1

]

tMS ≈
log p
log p0

1− p0

ncδ2p0
+ log p

log p0
b

[
log p
log p0

(1− p0)2

ncδ2p0
∨ 1

]
.

Depending on the parametrisation of the algorithm (choice of N and p0, number of cores
nc) we will have either N(1− p0) ≥ nc and so:

tMS ≈
b(log p)2

ncδ2
(1− p0)2

p0(log p0)2 (A.3)

or N(1− p0) ≤ nc and so:
tMS = log p

log p0
b (A.4)

with b the burn-in parameter.
Formula (A.3) is strictly decreasing in p0 while Eq. (A.4) is strictly increasing. This

can eventually suggest an optimal value p∗0 for p0 depending on N and nc, it is the solution
of:

log p
log p∗0

(1− p∗0)2

ncδ2p∗0
= N(1− p∗0)

nc
= 1. (A.5)

This optimal value of p0 means indeed that one should resample at each iteration only nc
samples. Finally we can write:

tMS(p0) ≥ tMS(p∗0) = b(log p)2

ncδ2
(1− p∗0)2

p∗0(log p∗0)2 >
b(log p)2

ncδ2 = tpar. (A.6)

These calculations show that also when looking at the effective implementation of the
statistics defined in Section 1.3 and Chapter 3 the point process lets obtain the best
estimator in terms of variance against effective computational time. Especially, the usual
value p0 = 0.1 results in an effective speed up of:

(1− p∗0)2

p∗0(log p∗0)2 ≈ 1.53.

181

Part III, Chapter A – Parallel computation of the estimators

A.3.2 Fixed number of terms algorithm
We now focus on Algorithm 21, which is used for both the quantile and the moment
estimator. Especially we first address the issue of choosing the parameter m0 of the
deterministic number of iterations of the first pass.

Let us denote by (qi)nci=1 the sequence of the nc last states of the after the first pass
(see Algorithm 21 line 2):

∀i ∈ J1, ncK, qi = min
j∈J1,NbatchK

Y j
nj

and (Ti)nci=1 the sequence of the corresponding times of the homogeneous Poisson processes:

∀i ∈ J1, ncK, Ti = − log P [Y > qi] .

Since (Ti)i are the times of homogeneous Poisson processes with parameter Nbatch, one
knows that they are iid. Gamma random variables Γm0/Nbatch.

Let Tmax = maxi Ti. Since y 7→ − log P [Y > y] is an increasing function, one has:

Tmax = − log P [Y > qmax] .

On the one hand Tmax is then the maximum of nc iid. random variables with distribution
Γm0/Nbatch. On the other hand the random number of events before qmax is the same as
the random number of events before Tmax for the corresponding homogeneous Poisson
processes.

Proposition A.2. Let tpar be the effective computing time of algorithm 21, we have:

E [tpar] = m0 +
√

2m0 log nc. (A.7)

Proof. We apply here the same line of argumentation as in the proof of Proposition A.1,
which lets us approximate the Gamma distribution by a Gaussian one:

Γm0

Nbatch
∼ N

(
m0

Nbatch
,

m0

Nbatch
2

)
.

Let Nmax be the random variable of the maximum of nc standard Gaussian variables, we
have:

E [Tmax] = E
[
Nmax

√
m0

Nbatch
+ m0

Nbatch

]
≈ m0

Nbatch
+
√
m0

Nbatch

√
2 log nc.

Then
E [tpar] = E [E [tpar | Tmax]] = Nbatch E [Tmax] = m0 +

√
2m0 log nc.

We now provide a criterion for choosing m0. Indeed, we consider that one can accept

182

A.3. Wall-clock time

to take a risk α that the Poisson Process does not go far enough.
Let Mt be the counting random variable of the marked Poisson Process a time t and

m = d−ncNbatch log pe the targeted number of events, the criterion writes as follows:

P [MTmax ≤ m] ≤ α. (A.8)

Proposition A.3 (Choice of m0). With the previous notations and t = − log p, we have:

m0 = dNbatch t+ β2/2− β
√

∆/2e (A.9)

with:
β = bnc −

log log 1/α√
2 log nc

and bnc the localisation parameter of the Gaussian law in the framework of Extreme Value
Theory: bnc =

√
2 log nc − (log log nc + log 4π) /2

√
2 log nc and ∆ = β2 + 4Nbatch t.

Proof. We have P [MTmax ≤ m] = P [Tmax ≤ Tm]. Furthermore, Tm = Γm/N ∼ N (t, t/N),
which gives: P [Tmax ≤ Tm] ≈ P [Tmax ≤ t].

Finally, we seek for m0 such that:

P [Tmax ≤ t] ≤ α.

Approximating once again Gamma laws with Gaussian distributions and using the extreme
value theory, we get:

α = exp
(
− exp

(
−
√

2 log nc
(
Nbatch t√

m0
−√m0 − bnc

)))

which concludes the proof.

Remark A.1. The targeted value α should not be set too small as the approximation
of Gamma laws with Gaussian distributions is not correct for rare events. However we
know that taking m0 = d−Nbatch log pe ensures a sufficient number of iterations because
ncd−Nbatch log pe ≥ d−ncNbatch log pe. Furthermore, if after Algorithm 21 the number of
events is not sufficient, one can restart Algorithm 19 with the whole point process with
parameter N for the number of missing events.

Eventually this risk is only a mean to allow for embarrassingly parallel computation of
the quantile and moment estimators and the worst that can happen is that it ends up by
doing a sequential parallelisation on the form of Algorithm 19.

Corollary A.1 (Expected effective computing time of the quantile estimator (see Algo-
rithm 21)). With this value of m0, we have:

E [tpar] ≈ −Nbatch log p+
√

2Nbatch log 1/p log nc. (A.10)

183

Part III, Chapter A – Parallel computation of the estimators

As for the probability estimator, we now give the effective computing time of the
quantile estimator as a function of its coefficient of variation δ:

E [tpar] ≈
b

nc

(
p log p
δqfY (q)

)2 (
1 + 1

b log 1/p + δγ(q)
√

2nc log nc
)

(A.11)

with fY the pdf of Y , γ(q) = qfY (q)
−p log p and b the burn-in parameter.

Remark A.2 (Order of magnitude of γ(q)). While there is no general result on the order
of magnitude of γ(q), it can be shown that in a lot of cases it remains small. For instance
if one considers von Mises distributions, i.e. distributions such that the cdf FY of Y has
the following representation:

1− FY (q) = F̄Y (q) = c exp
(
−
∫ q

z

1
a(t)dt

)

with c a given positive constant and a(·) the auxiliary function of FY : a = F̄Y /f [see
Embrechts et al., 1997, Definition 3.3.18], one obtains:

1
γ(q) = −p log p

qfY (q) = −a(q)
q

log c+ a(q)
q

∫ q

z

dt
a(t) .

In this equality, the first term goes to 0 [see Embrechts et al., 1997, Proposition 3.3.24]
and the second one can be bounded from below by 1− z/q for any z ∈ R such that a′ > 0
over [z,∞). This eventually means that γ(q) ∈ [0, 1]. For instance, Exponential, Weibull
or Erlang distributions all have a von Mises representation.

As for the probability estimator there is an extra term in Eq. (A.11) driven by
√
nc log nc.

It is a direct consequence of the embarrassingly parallel implementation. Eventually the
conclusions remain the same.

A.4 Numerical benchmark of the parallelisation
In this section, we try to estimate probabilities and quantiles on usual test cases with
different values for Nbatch for a given total number of processes N . This aims at evaluating
the effect on the parallelisation on numerical results. Especially while there should not be
any difference in theory, the quality of conditional simulations depends on the size Nbatch.

In the following, we use the Last Particle Algorithm as a particular implementation
of Algorithm 19 and the results are got from R package mistral [Bousquet et al., 2015].
This is to underline the fact that the Last Particle Algorithm as proposed by Guyader
et al. [2011] or Simonnet [2016] is only one possible implementation of the probability
estimator, and to show how this estimator is altered or not with the use of parallel
computing. Especially some authors [Bréhier et al., 2015a] have proposed to average

184

A.4. Numerical benchmark of the parallelisation

Figure A.1: A 2 degrees of freedom damped oscillator [illustration from Dubourg et al.,
2011].

several iid. realisations of the Last Particle Algorithm to benefit from parallel computers.
This is clearly under optimal because:

∀(nc, Nbatch) ∈ (N∗)2,
1
nc

(
p−1/Nbatch − 1

)
≥ p−1/(ncNbatch) − 1.

Furthermore, the law of the averaged estimator is not the same as the one of the original
MVUE estimator (see Section 3.3). Eventually it depends on the implementation (number
of iid. replicas).

A.4.1 Presentation of the examples

Watermarking detection This example is the one used by Cérou et al. [2012] and
Guyader et al. [2011] to show the properties of their algorithms. Let d ∈ N∗ be the
dimension of the input space and u be a unit vector in Rd; the failure domain is regarded
as the interior of a double cone of axis u [see Merhav and Sabbag, 2008]:

F = {x ∈ Rd | g(x) := | x
Tu |
‖ x ‖ > q}. (A.12)

The analytic relation between p and q writes as follows:

p = P(g(X) > q) = 1− FY (q) = 1−G
(

(d− 1)q2

1− q2

)

with FY the cdf of g(X) and G the cdf of a Fisher variable with (1, d − 1) degrees of
freedom [see Guyader et al., 2011].

A two-degrees-of-freedom damped oscillator This example sketched in Figure A.1
was first proposed by Kiureghian and Stefano [1991] and then used by Bourinet et al.
[2011] and Dubourg et al. [2011].

It is a two degrees of freedom damped oscillator characterised by masses mp and ms,
spring stiffnesses kp and ks, natural frequencies ω2

p = kp/mp and ω2
s = ks/ms and damping

ratios ζp and ζs. Igusa and Der Kiureghian [1985] showed that the mean-squared relative
displacement of the secondary spring under a white noise base acceleration with intensity

185

Part III, Chapter A – Parallel computation of the estimators

S0 writes as follows:

E[x2
s] = π

S0

4ζsω2
s

ζaζs
ζpζs(4ζ2

a + θ2) + γζ2
a

(ζpω3
p + ζsω

3
s)ωp

4ζaω4
a

with γ = ms/mp, ωa = (ωp + ωs)/2, ζa = (ζp + ζs)/2 and θ = (ωp − ωs)/ωa.
Finally, Kiureghian and Stefano [1991] showed that the limit-state function could write

under reasonable approximation as follows:

g(x) = Fs − p ks
√
E[x2

s] (A.13)

with Fs the force capacity of the secondary spring and p = 3 a peak factor [Dubourg et al.,
2011].

Table A.1 presents the probabilistic model used. As it uses lognormal distributions

Variable Mean CV (%)
mp 1.5 10
ms 0.01 10
kp 1 20
ks 0.01 20
ζp 0.05 40
ζs 0.02 50
Fs 27.5 10
S0 100 10

Table A.1: Stochastic model of the oscillator. All random variables are lognormally
distributed.

and reversible kernel is defined in the standard space an iso-probabilistic transformation is
done before each call to the limit-state function.

A.4.2 Estimation of failure probability

Watermarking detection Here we set d = 20, q = 0.95 and we try to estimate

p = 1−G
(

(d− 1)q2

1− q2

)
= 4.704 10−11 where G is the cdf of a Fisher random variable with

(1, d− 1) degrees of freedom.

A two-degrees-of-freedom damped oscillator Failure is defined as g(x) < 0. There
is no analytical expression available. However a reference value was calculated using the
usual Subset Simulation algorithm with N = 4 × 106, and one found: p ≈ 3.75 × 10−7

with a coefficient of variation lower than 3%.
The purpose of this part is to evaluate the behaviour of the estimator depending on

the batch size of Algorithm 20. Especially the smaller Nbatch the faster the algorithm in
wall-clock time. The following configurations have been tested, expressed as “nc ×Nbatch”:

186

A.4. Numerical benchmark of the parallelisation

“1x1000”, “10x100”, “20x50”, “50x20”, “100x10”, “200x5”, “500x2” and “1000x1”. Results
are shown in Figure A.2 as boxplots over 100 simulations, whiskers extending to the
extreme values. The reference value is displayed with the red dashed line, and in the case
of the 2 d-o-f oscillator a 95% confidence interval is displayed as well with the black dashed
lines. In both examples it appears that from Nbatch = 10 the estimators are almost the

1000 100 50 20 10 5 2 1

3

4

5

6

7

8

9

10

Pr
ob

ab
ili
ty

(×
10
−

10
)

Nbatch
(a) Watermarking detection

1000100 50 20 10 5 2 1
1

2

3

4

5

Pr
ob

ab
ili
ty

(×
10
−

7)

Nbatch
(b) 2 d-o-f oscillator with E [Fs] = 27.5

Figure A.2: Boxplots of the probability estimator given by Algorithm 20 with a total of
N = 1000 random walks generated by batches of size Nbatch. Results over 100 simulations,
whiskers extending to the extreme values. The dashed lines stand for the references values.

same.
We now look at the effective computing time of the estimators, i.e. the maximum

number of calls to the limit-state function made by each one of the nc algorithms for a
given configuration. Especially we intend to check the consistency of formula (A.1).

As for the probability, results are displayed as boxplots over 100 simulations in Figure
A.3. The red dots show the theoretical value given by Eq. (A.1). One can see that apart
from the two last configurations of the watermarking detection example, these values are
in good agreement with the empirical results.

To conclude, the point process point of view allows to define new parallel algorithms
for extreme probability estimation. The numerical results for a particular implementation
(the Last Particle Algorithm as the batch generator of point processes) show that parallel
computation can efficiently reduce the wall-clock time of this algorithm without altering
its statistical properties. Since it is linked with Multilevel Splitting methods, we hence
have obtained the most efficient Multilevel Splitting strategy in terms of variance of the
estimator against time. Especially the gain is approximately 50% comparing to the original
Subset Simulation as described by Au and Beck [2001] (see Eq. A.6).

Practically speaking, the minimal number of particles to be considered in each algorithm

187

Part III, Chapter A – Parallel computation of the estimators

(a) Watermarking detection (b) 2 d-o-f oscillator with E [Fs] = 27.5

Figure A.3: Effective computing time of the probability estimator given by Algorithm 20
with a total of N = 1000 random walks generated by batches of size Nbatch. Results over
100 simulations, whiskers extending to the extreme values. The starred dots stand for the
theoretical values given by Eq. (A.1).

19 seems to depend on the limit-state function as well as on the dimension on the input
space and should be set accordingly.

A.4.3 Estimation of quantile

We use the watermarking detection example presented Section A.4.1. We now set p =
4.704 10−11 and try to find back q = 0.95. Results are displayed in Figure A.4 as boxplots
over 100 simulations, whiskers extending to the extreme values and reference value is added
to the plot with a dashed line. For Nbatch ≥ 10 the estimators seem to be almost the same.
Indeed one could expect to get the same type of results as for the probability estimators
because the algorithms are intrinsically the same, i.e. a wrap-up of Algorithm 19, in other
words the practical generation of iid. point processes. Thus a higher estimation of the
probability means a too low number of iterations, i.e. that point processes are moving too
fast, which will directly produce an overestimation of the quantile.

As for the probability estimator we now intend to validate formula (A.11) on the
effective computing time. The results are presented in Figure A.4b and show a good
agreement with the formula apart from the extreme cases (Nbatch ≤ 5). This is because
the smaller the population, the higher the intermediate failure level (cf. Figure A.4d) and
so the greater the number of transitions to stop the algorithm.

We also check the total number of events of the superposed process as this should be
ideally equal to the targeted one’s m = d−N log pe, and in practice as close as possible.
Especially we have accepted here to take a risk α = 5% (see Eq. A.3) not to have enough

188

A.4. Numerical benchmark of the parallelisation

(a) Quantile estimates. The dashed line stands
for the theoretical value.

(b) Effective computing time. The stars give the
theoretical values calculated with Eq. (A.10).

(c) Total number of events generated by the algo-
rithm. The dashed line stands for the targeted
number of events.

(d) Distribution of qmax over the 100 simulations.
qmax is the farthest state reached after the first
pass of Algorithm 21.

Figure A.4: Statistics on quantile estimator with Algorithm 21 over 100 simulations,
whiskers extending to the extreme values.

events at the end of the algorithm. In Figure A.4c we can see that in some cases the
algorithm actually did not produce enough events. The number of “too short” algorithms
are 5, 4, 3, 3 and 1 for Nbatch = 100, 50, 20, 10 and 5 respectively, and 0 elsewhere. On a
total of 100 simulations this is in good agreement with the parameter α set to 5%.

189

Part III, Chapter A – Parallel computation of the estimators

A.5 Conclusion on parallel implementation
On the one hand we have found an optimal value for p0 for classical Multilevel Splitting
algorithms in terms of computational time against variance of the estimator (considering
that the only important operation is a call to the limit-state function, see Eq. (A.5)). On
the other hand we see that our approach gives always a better result than the Multilevel
Splitting method with the optimal p0. In other words, our approach allows for taking
p0 → 1 while keeping the parallel computation. Thus this is the optimal way of computing
Multilevel Splitting methods.

Furthermore, with standard values of log 1/p ≈ 101, nc ≈ 102 and δ2 = 10−2, we get
(log p)2/(ncδ2) ≈ 102, which means that E [tpar] is multiplied by ≈ 1.1 if one considers
only the embarrassingly parallel implementation (see Eqs. A.1 and A.10). As sequential
parallelisation and dynamic allocation of the computational resources can indeed increase
the computational time consequently, this result is of great interest because it shows that
without losing too much time the implementation of Multilevel Splitting methods can be
a lot easier. Finally, we point out the fact that these methods have been implemented
in the R package mistral [Bousquet et al., 2015]. This allows for a direct use of parallel
computing for probability and quantile estimation without specific knowledge on parallel
computing.

190

Bibliography

Michael Amrein and Hans R Künsch. A variant of importance splitting for rare event
estimation: Fixed number of successes. ACM Transactions on Modeling and Computer
Simulation (TOMACS), 2011.

Barry C Arnold, Narayanaswamy Balakrishnan, and Haikady Navada Nagaraja. A first
course in order statistics, volume 54. Siam, 1992.

Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American
mathematical society, 68(3):337–404, 1950.

Siu-Kui Au and James L Beck. Estimation of small failure probabilities in high dimensions
by subset simulation. Probabilistic Engineering Mechanics, 16(4):263–277, 2001.

François Bachoc. Parametric estimation of covariance function in Gaussian-process based
Kriging models. Application to uncertainty quantification for computer experiments. PhD
thesis, Université Paris-Diderot-Paris VII, 2013.

Mathieu Balesdent, Jerome Morio, and Julien Marzat. Kriging-based adaptive importance
sampling algorithms for rare event estimation. Structural Safety, 44:1–10, 2013.

Anirban Basudhar and Samy Missoum. An improved adaptive sampling scheme for the
construction of explicit boundaries. Structural and Multidisciplinary Optimization, 42
(4):517–529, 2010.

Julien Bect, David Ginsbourger, Ling Li, Victor Picheny, and Emmanuel Vazquez. Se-
quential design of computer experiments for the estimation of a probability of failure.
Statistics and Computing, 22(3):773–793, 2012.

Julien Bect, Roman Sueur, Alexis Gérossier, Loïc Mongellaz, Sébastien Petit, and Em-
manuel Vazquez. Échantillonnage préférentiel et méta-modèles : méthodes bayési-
ennes optimale et défensive. In 47èmes Journées de Statistique de la SFdS - JdS
2015, Lille, France, June 2015. URL https://hal-supelec.archives-ouvertes.fr/
hal-01163632.

Julien Bect, Ling Li, and Emmanuel Vazquez. Bayesian subset simulation. arXiv preprint
arXiv:1601.02557, 2016.

Jan Beirlant, Frederico Caeiro, and Ivette M Gomes. An overview and open research topics
in statistics of univariate extremes. REVSTAT-Statistical Journal, 10(1):1–31, 2012.

191

https://hal-supelec.archives-ouvertes.fr/hal-01163632
https://hal-supelec.archives-ouvertes.fr/hal-01163632

José M Bernardo, M J Bayarri, James O Berger, Philip A Dawid, and David Heckerman.
Bayesian Statistics 9. Oxford University Press, 2011.

Alexandros Beskos, Ajay Jasra, Nikolas Kantas, and Alexandre Thiery. On the convergence
of adaptive sequential monte carlo methods. Annals of Applied Probability, 26(2), 2016.

Ivona Bezáková, Daniel Štefankovic, Vijay V Vazirani, and Eric Vigoda. Accelerating
simulated annealing for the permanent and combinatorial counting problems. SIAM
Journal on Computing, 37(5):1429–1454, 2008.

Barron J Bichon, Michael S Eldred, Laura Painton Swiler, Sandaran Mahadevan, and
John M McFarland. Efficient global reliability analysis for nonlinear implicit performance
functions. AIAA journal, 46(10):2459–2468, 2008.

Géraud Blatman. Adaptive sparse polynomial chaos expansions for uncertainty propagation
and sensitivity analysis. PhD thesis, Clermont-Ferrand 2, 2009.

Géraud Blatman and Bruno Sudret. An adaptive algorithm to build up sparse polyno-
mial chaos expansions for stochastic finite element analysis. Probabilistic Engineering
Mechanics, 25(2):183–197, 2010.

Géraud Blatman and Bruno Sudret. Adaptive sparse polynomial chaos expansion based
on least angle regression. Journal of Computational Physics, 230(6):2345–2367, 2011.

Zdravko I Botev and Dirk P Kroese. An efficient algorithm for rare-event probability
estimation, combinatorial optimization, and counting. Methodology and Computing in
Applied Probability, 10(4):471–505, 2008.

Zdravko I Botev and Dirk P Kroese. Efficient monte carlo simulation via the generalized
splitting method. Statistics and Computing, 22(1):1–16, 2012.

Jean-Marc Bourinet. Rare-event probability estimation with adaptive support vector
regression surrogates. Reliability Engineering & System Safety, 150:210–221, 2016.

Jean-Marc Bourinet, François Deheeger, and Maurice Lemaire. Assessing small failure
probabilities by combined subset simulation and support vector machines. Structural
Safety, 33(6):343–353, 2011.

Nicolas Bousquet, Gilles Defaux, Bertrand Iooss, Vincent Moutoussamy, and Clement
Walter. mistral: Methods in Structural Reliability, 2015. URL http://CRAN.R-project.
org/package=mistral. R package version 2.0.2.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

192

http://CRAN.R-project.org/package=mistral
http://CRAN.R-project.org/package=mistral

Charles-Édouard Bréhier. Large deviations principle for the adaptive multilevel splitting
algorithm in an idealized setting. ALEA, Latin American Journal of Probability and
Mathematical Statistics, 12:717–742, 2015.

Charles-Édouard Bréhier, Maxime Gazeau, Ludovic Goudenege, Tony Lelièvre, and Math-
ias Rousset. Unbiasedness of some generalized Adaptive Multilevel Splitting algorithms.
Annals of Applied Probability, To Appear, 2015a.

Charles-Édouard Bréhier, Ludovic Goudenege, and Loic Tudela. Central limit theorem
for adaptative multilevel splitting estimators in an idealized setting. Proceedings of the
14th MCQMC conference, 2015b.

Charles-Édouard Bréhier, Tony Lelièvre, and Mathias Rousset. Analysis of adaptive
multilevel splitting algorithms in an idealized case. ESAIM: Probability and Statistics,
19:361–394, 2015c.

Karl Breitung. Asymptotic approximations for multinormal integrals. Journal of Engi-
neering Mechanics, 110(3):357–366, 1984.

Brendon J Brewer, Livia B Pártay, and Gábor Csányi. Diffusive nested sampling. Statistics
and Computing, 21(4):649–656, 2011.

Francesco Cadini, Francisco Santos, and Enrico Zio. An improved adaptive kriging-based
importance technique for sampling multiple failure regions of low probability. Reliability
Engineering & System Safety, 131:109–117, 2014.

Frédéric Cérou and Arnaud Guyader. Adaptive multilevel splitting for rare event analysis.
Stochastic Analysis and Applications, 25(2):417–443, 2007.

Frederic Cérou and Arnaud Guyader. Fluctuation analysis of adaptive multilevel splitting.
Annals of Applied Probability, To Appear, 2016.

Frédéric Cérou, Pierre Del Moral, Teddy Furon, Arnaud Guyader, et al. Rare event
simulation for a static distribution. 2009.

Frédéric Cérou, Arnaud Guyader, Reuven Rubinstein, and Radislav Vaisman. On the use
of smoothing to improve the performance of the splitting method. Stochastic Models, 27
(4):629–650, 2011.

Frédéric Cérou, Pierre Del Moral, Teddy Furon, and Arnaud Guyader. Sequential Monte
Carlo for rare event estimation. Statistics and Computing, 22(3):795–808, 2012.

John M Chambers and Trevor Hastie. Statistical Models in S. Wadsworth & Brooks/Cole
computer science series. Wadsworth & Brooks/Cole Advanced Books & Software, 1992.
ISBN 9780534167646. URL https://books.google.fr/books?id=uyfvAAAAMAAJ.

193

https://books.google.fr/books?id=uyfvAAAAMAAJ

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Pierre Chauvet. Aide-mémoire de géostatistique linéaire. Presses des MINES, 2008.

Clément Chevalier. Fast uncertainty reduction strategies relying on Gaussian process
models. PhD thesis, University of Bern, 2013.

Clément Chevalier, Julien Bect, David Ginsbourger, Emmanuel Vazquez, Victor Picheny,
and Yann Richet. Fast parallel kriging-based stepwise uncertainty reduction with
application to the identification of an excursion set. Technometrics, 56(4):455–465, 2014.
doi: 10.1080/00401706.2013.860918. URL http://dx.doi.org/10.1080/00401706.
2013.860918.

Jean-Paul Chiles and Pierre Delfiner. Geostatistics: modeling spatial uncertainty, volume
497. John Wiley & Sons, 2009.

Nicolas Chopin. A sequential particle filter method for static models. Biometrika, 89(3):
539–552, 2002. doi: 10.1093/biomet/89.3.539. URL http://biomet.oxfordjournals.
org/content/89/3/539.abstract.

Nicolas Chopin and Christian P. Robert. Properties of nested sampling. Biometrika, 2010.
doi: 10.1093/biomet/asq021. URL http://biomet.oxfordjournals.org/content/
early/2010/06/01/biomet.asq021.abstract.

Robert M Corless, Gaston H Gonnet, David EG Hare, David J Jeffrey, and Donald E
Knuth. On the lambertw function. Advances in Computational mathematics, 5(1):
329–359, 1996.

Guillaume Damblin, Mathieu Couplet, and Bertrand Iooss. Numerical studies of space-
filling designs: optimization of latin hypercube samples and subprojection properties.
Journal of Simulation, 7(4):276–289, 2013.

Anirban DasGupta. Probability for statistics and machine learning: fundamentals and
advanced topics. Springer Science & Business Media, 2011.

G Defaux and P Evrard. Probabilistic analysis of a containment vessel subjected to
dynamic pressure loading using surrogate models. In Safety, Reliability, Risk and
Life-Cycle Performance of Structures and Infrastructures, pages 3203–3210. CRC Press,
jan 2014. ISBN 978-1-138-00086-5. doi: doi:10.1201/b16387-463. URL http://dx.doi.
org/10.1201/b16387-463.

François Deheeger. Couplage mécano-fiabiliste: 2 SMART-méthodologie d’apprentissage
stochastique en fiabilité. PhD thesis, Université Blaise Pascal-Clermont-Ferrand II, 2008.

194

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://dx.doi.org/10.1080/00401706.2013.860918
http://dx.doi.org/10.1080/00401706.2013.860918
http://biomet.oxfordjournals.org/content/89/3/539.abstract
http://biomet.oxfordjournals.org/content/89/3/539.abstract
http://biomet.oxfordjournals.org/content/early/2010/06/01/biomet.asq021.abstract
http://biomet.oxfordjournals.org/content/early/2010/06/01/biomet.asq021.abstract
http://dx.doi.org/10.1201/b16387-463
http://dx.doi.org/10.1201/b16387-463

Pierre Del Moral. Feynman-Kac Formulae. Springer, 2004.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential monte carlo samplers.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(3):
411–436, 2006.

Jean-François Delmas and Benjamin Jourdain. Modèles aléatoires: applications aux
sciences de l’ingénieur et du vivant, volume 57. Springer Science & Business Media,
2006.

George Deodatis, Bruce R Ellingwood, and Dan M Frangopol. Safety, reliability, risk and
life-cycle performance of structures and infrastructures. CRC Press, 2014.

Armen Der Kiureghian and Taleen Dakessian. Multiple design points in first and second-
order reliability. Structural Safety, 20(1):37–49, 1998.

Persi Diaconis and Susan Holmes. Three examples of Monte-Carlo Markov chains: at
the interface between statistical computing, computer science, and statistical mechanics.
Springer, 1995.

Ove Ditlevsen and Henrik O Madsen. Structural reliability methods, volume 178. Wiley
New York, 1996.

Vincent Dubourg. Adaptive surrogate models for reliability analysis and reliability-based
design optimization. PhD thesis, Université Blaise Pascal-Clermont-Ferrand II, 2011.

Vincent Dubourg, François Deheeger, and Bruno Sudret. Metamodel-based importance
sampling for the simulation of rare events. Applications of Statistics and Probability in
Civil Engineering, 26:192, 2011.

Vincent Dubourg, B Sudret, and F Deheeger. Metamodel-based importance sampling for
structural reliability analysis. Probabilistic Engineering Mechanics, 33:47–57, 2013.

Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John Wiley &
Sons, 2012.

Delphine Dupuy, Jessica Franco, and Xavier Bay. Planification d’expériences numériques
à partir du processus ponctuel de strauss. In 12ème congrès de la société Française de
Recherche Opérationnelle et d’Aide à la Décision (ROADEF 2011), pages submission–
462, 2011.

Delphine Dupuy, Céline Helbert, and Jessica Franco. Dicedesign and diceeval: Two r
packages for design and analysis of computer experiments. Journal of Statistical Software,
65(11):1–38, 2015.

B Echard, N Gayton, and M Lemaire. Ak-mcs: An active learning reliability method
combining kriging and monte carlo simulation. Structural Safety, 33(2):145–154, 2011.

195

B Echard, Nicolas Gayton, Maurice Lemaire, and N Relun. A combined importance sam-
pling and kriging reliability method for small failure probabilities with time-demanding
numerical models. Reliability Engineering & System Safety, 111:232–240, 2013.

P Embrechts, C Klüppelberg, and T Mikosch. Modelling extremal events: for insurance
and finance, volume 33. Springer, 1997.

Oliver G Ernst, Antje Mugler, Hans-Jörg Starkloff, and Elisabeth Ullmann. On the con-
vergence of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling
and Numerical Analysis, 46(02):317–339, 2012.

Michael J Evans. Discussion of nested sampling for bayesian computations by john skilling.
Bayesian Statistics, 8:491–524, 2007.

Kai-Tai Fang, Runze Li, and Agus Sudjianto. Design and modeling for computer experi-
ments. CRC Press, 2005.

William Fauriat and Nicolas Gayton. Ak-sys: an adaptation of the ak-mcs method for
system reliability. Reliability Engineering & System Safety, 123:137–144, 2014.

JC Ferreira and VA Menegatto. Eigenvalues of integral operators defined by smooth
positive definite kernels. Integral Equations and Operator Theory, 64(1):61–81, 2009.

Alexander Forrester, Andras Sobester, and Andy Keane. Engineering design via surrogate
modelling: a practical guide. John Wiley & Sons, 2008.

Alexandre Froda. Sur la Distribution des Propriétés de Voisinage des Fonctions de
Variables Réelles. PhD thesis, Université de Paris, 1929.

Marnix Garvels. The splitting method in rare event simulation. Universiteit Twente, 2000.

Roger Ghanem and Pol D Spanos. Polynomial chaos in stochastic finite elements. Journal
of Applied Mechanics, 57(1):197–202, 1990.

Roger Ghanem, David Higdon, and Houman Owhadi. Handbook of Uncertainty Quantifi-
cation. Springer International Publishing, 2017.

Dan M Ghiocel and Roger G Ghanem. Stochastic finite-element analysis of seismic
soil-structure interaction. Journal of Engineering Mechanics, 128(1):66–77, 2002.

Michael B Giles. Multilevel monte carlo path simulation. Operations Research, 56(3):
607–617, 2008.

Paul Glasserman, Philip Heidelberger, Perwez Shahabuddin, and Tim Zajic. Splitting for
rare event simulation: analysis of simple cases. In Proceedings of the 28th conference on
Winter simulation, pages 302–308. IEEE Computer Society, 1996.

196

Paul Glasserman, Philip Heidelberger, Perwez Shahabuddin, and Tim Zajic. A large
deviations perspective on the efficiency of multilevel splitting. Automatic Control, IEEE
Transactions on, 43(12):1666–1679, 1998.

Paul Glasserman, Philip Heidelberger, Perwez Shahabuddin, and Tim Zajic. Multilevel
splitting for estimating rare event probabilities. Operations Research, 47(4):585–600,
1999.

Peter W Glynn and Donald L Iglehart. Importance sampling for stochastic simulations.
Management Science, 35(11):1367–1392, 1989.

Peter W Glynn and Ward Whitt. The asymptotic efficiency of simulation estimators.
Operations Research, 40(3):505–520, 1992.

Arnaud Guyader, Nicolas Hengartner, and Eric Matzner-Løber. Simulation and estimation
of extreme quantiles and extreme probabilities. Applied Mathematics & Optimization,
64(2):171–196, 2011.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The elements of
statistical learning: data mining, inference and prediction. The Mathematical Intelli-
gencer, 27(2):83–85, 2005.

Keith W Hastings. Monte carlo sampling methods using markov chains and their applica-
tions. Biometrika, 57(1):97–109, 1970.

Terje Haukaas, editor. Proceedings of the 12th International Conference on Applications
of Statistics and Probability in Civil Engineering, 2015. University of British Columbia.
ISBN 978-0-88865-245-4.

Jonathan B Hill. Robust estimation for average treatment effects. Available at SSRN
2260573, 2013. URL http://dx.doi.org/10.2139/ssrn.2260573.

Xiaoxu Huang, Jianqiao Chen, and Hongping Zhu. Assessing small failure probabilities by
ak–ss: An active learning method combining kriging and subset simulation. Structural
Safety, 59:86–95, 2016.

Mark Huber and Sarah Schott. Using tpa for bayesian inference. Bayesian Statistics 9, 9:
257–282, 2011.

Mark Huber, Sarah Schott, et al. Random construction of interpolating sets for high-
dimensional integration. Journal of Applied Probability, 51(1):92–105, 2014.

Jorge Eduardo Hurtado. Structural reliability: statistical learning perspectives, volume 17.
Springer Science & Business Media, 2013.

197

http://dx.doi.org/10.2139/ssrn.2260573

Takeru Igusa and Armen Der Kiureghian. Dynamic characterization of two-degree-of-
freedom equipment-structure systems. Journal of engineering mechanics, 111(1):1–19,
1985.

Bertrand Iooss and Paul Lemaître. A review on global sensitivity analysis methods.
In Uncertainty Management in Simulation-Optimization of Complex Systems, pages
101–122. Springer, 2015.

Pierre E Jacob, Alexandre H Thiery, et al. On nonnegative unbiased estimators. The
Annals of Statistics, 43(2):769–784, 2015.

Joachim Johansson. Estimating the mean of heavy-tailed distributions. Extremes, 6(2):
91–109, 2003.

Mark E Johnson, Leslie M Moore, and Donald Ylvisaker. Minimax and maximin distance
designs. Journal of statistical planning and inference, 26(2):131–148, 1990.

Sandeep Juneja and Perwez Shahabuddin. Rare-event simulation techniques: an introduc-
tion and recent advances. Handbooks in operations research and management science,
13:291–350, 2006.

H Kahn and T E Harris. Estimation of particle transmission by random sampling. National
Bureau of Standards applied mathematics series, 12:27–30, 1951.

Andreas Keese and Hermann G Matthies. Hierarchical parallelisation for the solution of
stochastic finite element equations. Computers & Structures, 83(14):1033–1047, 2005.

Charles R Keeton. On statistical uncertainty in nested sampling. Monthly Notices of the
Royal Astronomical Society, 414(2):1418–1426, 2011.

John Frank Charles Kingman. Poisson processes, volume 3. Clarendon Press, 1992.

Armen Der Kiureghian and Mario De Stefano. Efficient algorithm for second-order
reliability analysis. Journal of engineering mechanics, 117(12):2904–2923, 1991.

Jack PC Kleijnen. Design and analysis of simulation experiments, volume 20. Springer,
2008.

Hasan Ugur Koyluoglu and Soren RK Nielsen. New approximations for sorm integrals.
Structural Safety, 13(4):235–246, 1994.

Daniel G Krige. A statistical approach to some mine valuation and allied problems on the
Witwatersrand. PhD thesis, 1951.

François Le Gland. Combined use of importance weights and resampling weights in
sequential monte carlo methods. In ESAIM: Proceedings, volume 19, pages 85–100. EDP
Sciences, 2007.

198

Loic Le Gratiet. Multi-fidelity Gaussian process regression for computer experiments. PhD
thesis, Université Paris-Diderot-Paris VII, 2013.

Olivier P Le Maître, Matthew T Reagan, Habib N Najm, Roger G Ghanem, and Omar M
Knio. A stochastic projection method for fluid flow: Ii. random process. Journal of
computational Physics, 181(1):9–44, 2002.

Pierre L’Ecuyer, Jose H Blanchet, Bruno Tuffin, and Peter W Glynn. Asymptotic
robustness of estimators in rare-event simulation. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 20(1):6, 2010.

Ling Li, Julien Bect, and Emmanuel Vazquez. Bayesian Subset Simulation: a kriging-based
subset simulation algorithm for the estimation of small probabilities of failure. In 11th
International Probabilistic Assessment and Management Conference (PSAM11) and The
Annual European Safety and Reliability Conference (ESREL 2012), pages CD–ROM
Proceedings (10 pages), Helsinki, Finland, June 2012. URL https://hal-supelec.
archives-ouvertes.fr/hal-00715316.

Jason L Loeppky, Jerome Sacks, and William J Welch. Choosing the sample size of a
computer experiment: A practical guide. Technometrics, 2012.

Stefano Martiniani, Jacob D Stevenson, David J Wales, and Daan Frenkel. Superposition
enhanced nested sampling. Physical Review X, 4(3):031034, 2014.

Georges Matheron. Principles of geostatistics. Economic geology, 58(8):1246–1266, 1963.

Georges Matheron. Le krigeage universel. 1969.

Dan McLeish. A general method for debiasing a monte carlo estimator. Monte Carlo
Methods and Applications, 2011.

J. Mercer. Functions of positive and negative type, and their connection with the theory
of integral equations. Philosophical Transactions of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, 209(441-458):415–446, 1909. ISSN
0264-3952. doi: 10.1098/rsta.1909.0016. URL http://rsta.royalsocietypublishing.
org/content/209/441-458/415.

Neri Merhav and Erez Sabbag. Optimal watermark embedding and detection strategies
under limited detection resources. IEEE Transactions on Information Theory, 54(1):
255–274, 2008.

Nicholas Metropolis and Stanislaw Ulam. The Monte Carlo method. Journal of the
American Statistical Association, 44(247):335–341, 1949.

199

https://hal-supelec.archives-ouvertes.fr/hal-00715316
https://hal-supelec.archives-ouvertes.fr/hal-00715316
http://rsta.royalsocietypublishing.org/content/209/441-458/415
http://rsta.royalsocietypublishing.org/content/209/441-458/415

David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel, and Friedrich
Leisch. e1071: Misc Functions of the Department of Statistics, Probability Theory Group
(Formerly: E1071), TU Wien, 2015. URL http://CRAN.R-project.org/package=
e1071. R package version 1.6-7.

Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized algorithms
and probabilistic analysis. Cambridge University Press, 2005.

Thomas Most. An adaptive response surface approach for structural reliability analyses
based on support vector machines. In Proceedings of the Eleventh International Con-
ference on Civil, Structural and Environmental Engineering Computing, BHV Topping,
2007.

Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Chapman & Hall/CRC,
2010.

Pia Mukherjee, David Parkinson, and Andrew R Liddle. A nested sampling algorithm for
cosmological model selection. The Astrophysical Journal Letters, 638(2):L51, 2006.

Abdelhakim Necir, Abdelaziz Rassoul, and Ričardas Zitikis. Estimating the conditional
tail expectation in the case of heavy-tailed losses. Journal of Probability and Statistics,
2010, 2010. URL http://dx.doi.org/10.1155/2010/596839.

Art Owen and Yi Zhou. Safe and effective importance sampling. Journal of the American
Statistical Association, 95(449):135–143, 2000.

Liang Peng. Estimating the mean of a heavy tailed distribution. Statistics & Probability
Letters, 52(3):255–264, 2001.

Victor Picheny, David Ginsbourger, Olivier Roustant, Raphael T Haftka, and Nam-Ho
Kim. Adaptive designs of experiments for accurate approximation of a target region.
Journal of Mechanical Design, 132(7):071008, 2010.

Luc Pronzato and Werner G Müller. Design of computer experiments: space filling and
beyond. Statistics and Computing, 22(3):681–701, 2012.

James Gary Propp and David Bruce Wilson. Exact sampling with coupled markov chains
and applications to statistical mechanics. Random structures and Algorithms, 9(1-2):
223–252, 1996.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2015. URL https://www.R-project.org/.

Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine
learning. the MIT Press, 2006.

200

http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=e1071
http://dx.doi.org/10.1155/2010/596839
https://www.R-project.org/

Sidney I Resnick. Extreme values, regular variation and point processes. Springer, 2013.

Chang-han Rhee and Peter W Glynn. Unbiased estimation with square root convergence
for sde models. Operations Research, 63(5):1026–1043, 2015.

Christian P Robert and George Casella. Monte Carlo statistical methods. Springer, 2004.

Gareth Roberts. Comments on "Using TPA for Bayesian inference" by Huber, M. and
Schott, S. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman,
Smith A. F. M., and M. West, editors, Bayesian Statistics 9, pages 257–282. Oxford
University Press, 2011.

Claudio M Rocco and José Alı Moreno. Fast monte carlo reliability evaluation using
support vector machine. Reliability Engineering & System Safety, 76(3):237–243, 2002.

Sheldon Ross. Simulation. Academic Press, fifth edition, 2013. ISBN 978-0-12-415825-2.

Olivier Roustant, David Ginsbourger, and Yves Deville. DiceKriging, DiceOptim: Two
R packages for the analysis of computer experiments by kriging-based metamodeling
and optimization. Journal of Statistical Software, 51(1):1–55, 2012. URL http://www.
jstatsoft.org/v51/i01/.

Gerardo Rubino, Bruno Tuffin, et al. Rare event simulation using Monte Carlo methods,
volume 73. Wiley Online Library, 2009.

Reuven Rubinstein. The cross-entropy method for combinatorial and continuous optimiza-
tion. Methodology and computing in applied probability, 1(2):127–190, 1999.

Reuven Rubinstein. Entropy and cloning methods for combinatorial optimization, sampling
and counting using the gibbs sampler. In Information Theory and Statistical Learning,
pages 385–434. Springer, 2009a.

Reuven Rubinstein. The gibbs cloner for combinatorial optimization, counting and sampling.
Methodology and Computing in Applied Probability, 11(4):491–549, 2009b.

Reuven Rubinstein. Randomized algorithms with splitting: Why the classic randomized
algorithms do not work and how to make them work. Methodology and Computing in
Applied Probability, 12(1):1–50, 2010.

Reuven Rubinstein and Dirk P Kroese. Simulation and the Monte Carlo method, volume
707. John Wiley & Sons, 2011.

Reuven Rubinstein, Andrey Dolgin, and Radislav Vaisman. The splitting method for
decision making. Communications in Statistics-Simulation and Computation, 41(6):
905–921, 2012.

201

http://www.jstatsoft.org/v51/i01/
http://www.jstatsoft.org/v51/i01/

Jerome Sacks, Susannah B Schiller, and William JWelch. Designs for computer experiments.
Technometrics, 31(1):41–47, 1989.

Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni,
Debora Gatelli, Michaela Saisana, and Stefano Tarantola. Global sensitivity analysis:
the primer. John Wiley & Sons, 2008.

Thomas J Santner, Brian J Williams, and William I Notz. The design and analysis of
computer experiments. Springer, 2003.

R Schöbi, B Sudret, and S Marelli. Rare event estimation using polynomial-chaos kriging.
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil
Engineering, page D4016002, 2016.

Eric Simonnet. Combinatorial analysis of the adaptive last particle method. Statistics and
Computing, 26(1-2):211–230, 2016.

John Skilling. Nested sampling for general bayesian computation. Bayesian Analysis, 1(4):
833–859, 2006.

Adrian Smith, Arnaud Doucet, Nando de Freitas, and Neil Gordon. Sequential Monte
Carlo methods in practice. Springer Science & Business Media, 2013.

Alex J Smola and Bernhard Schölkopf. A tutorial on support vector regression. Statistics
and computing, 14(3):199–222, 2004.

Christian Soize and Roger Ghanem. Physical systems with random uncertainties: chaos rep-
resentations with arbitrary probability measure. SIAM Journal on Scientific Computing,
26(2):395–410, 2004.

Daniel Straub and Iason Papaioannou. Bayesian updating with structural reliability
methods. Journal of Engineering Mechanics, 141(3):04014134, 2014.

Daniel Straub, Iason Papaioannou, and Wolfgang Betz. Bayesian analysis of rare events.
Journal of Computational Physics, 314:538–556, 2016.

Bruno Sudret. Meta-models for structural reliability and uncertainty quantification. In
K. Phoon, M. Beer, S Quek, and S Pang, editors, Proc. 5th Asian-Pacific Symp. Struct.
Reliab. (APSSRA 2012), pages 53–76, 2012.

Vladimir Vapnik. Pattern recognition using generalized portrait method. Automation and
remote control, 24:774–780, 1963.

Vladimir Vapnik and Alexey Chervonenkis. A note on one class of perceptrons. Automation
and remote control, 25(1), 1964.

202

Christelle Vergé, Cyrille Dubarry, Pierre Del Moral, and Eric Moulines. On parallel
implementation of sequential monte carlo methods: the island particle model. Statistics
and Computing, pages 1–18, 2013.

Manuel Villén-Altamirano and Jose Villén-Altamirano. Restart: A method for accelerating
rare event simulations. Analysis, 3:3, 1991.

PH Waarts. Structural reliability using finite element methods: an appraisal of directional
adaptive response surface sampling (DARS). PhD thesis, Ph. D. Thesis, 2000.

Hans Wackernagel. Multivariate geostatistics: an introduction with applications. Springer
Science & Business Media, 2013.

Grace Wahba et al. Support vector machines, reproducing kernel hilbert spaces and the
randomized gacv. Advances in Kernel Methods-Support Vector Learning, 6:69–87, 1999.

Clément Walter. Moving particles: A parallel optimal multilevel splitting method with ap-
plication in quantiles estimation and meta-model based algorithms. Structural Safety, 55
(0):10 – 25, 2015a. ISSN 0167-4730. doi: http://dx.doi.org/10.1016/j.strusafe.2015.02.002.
URL http://www.sciencedirect.com/science/article/pii/S0167473015000156.

Clément Walter. Point process-based monte carlo estimation. Statistics and Computing, To
Appear, 2015b. doi: 10.1007/s11222-015-9617-y. URL http://dx.doi.org/10.1007/
s11222-015-9617-y.

Clément Walter. Rare event simulation and splitting for discontinuous random variables.
ESAIM: PS, 19:794–811, 2015c. doi: 10.1051/ps/2015017. URL http://dx.doi.org/
10.1051/ps/2015017.

Clément Walter and Gilles Defaux. Rare event simulation: a point process interpreta-
tion with application in probability and quantile estimation. Proceedings of the 12th

International Conference on Applications of Statistics and Probability, 2015.

Steve Weston. doMPI: Provides a parallel backend for the %dopar% function using the
Rmpi package, 2015a. URL http://CRAN.R-project.org/package=doParallel. R
package version 1.0.10.

Steve Weston. doParallel: Foreach Parallel Adaptor for the ’parallel’ Package, 2015b. URL
http://CRAN.R-project.org/package=doParallel. R package version 1.0.10.

Steve Weston. foreach: Provides Foreach Looping Construct for R, 2015c. URL http:
//CRAN.R-project.org/package=foreach. R package version 1.4.3.

Dongbin Xiu. Fast numerical methods for stochastic computations: a review. Communi-
cations in computational physics, 5(2-4):242–272, 2009.

203

http://www.sciencedirect.com/science/article/pii/S0167473015000156
http://dx.doi.org/10.1007/s11222-015-9617-y
http://dx.doi.org/10.1007/s11222-015-9617-y
http://dx.doi.org/10.1051/ps/2015017
http://dx.doi.org/10.1051/ps/2015017
http://CRAN.R-project.org/package=doParallel
http://CRAN.R-project.org/package=doParallel
http://CRAN.R-project.org/package=foreach
http://CRAN.R-project.org/package=foreach

Yuan Xiukai, Lu Zhenzhou, and Lu Yuanbo. Support vector machine response surface
method based on fast markov chain simulation. In Intelligent Computing and Intelligent
Systems, 2009. ICIS 2009. IEEE International Conference on, volume 4, pages 279–282.
IEEE, 2009.

Yanling Zhang and A Der Kiureghian. Two improved algorithms for reliability analysis.
In Reliability and optimization of structural systems, pages 297–304. Springer, 1995.

204

Résumé

Cette thèse est une contribution à la problématique de la simulation d’événements rares.
A partir de l’étude des méthodes de Splitting, un nouveau cadre théorique est développé,
indépendant de tout algorithme. Ce cadre, basé sur la définition d’un processus ponctuel
associé à toute variable aléatoire réelle, permet de définir des estimateurs de probabilités,
quantiles et moments sans aucune hypothèse sur la variable aléatoire. Le caractère artificiel
du Splitting (sélection de seuils) disparaît et l’estimateur de la probabilité de dépasser
un seuil est en fait un estimateur de la fonction de répartition jusqu’au seuil considéré.
De plus, les estimateurs sont basés sur des processus ponctuels iid. et permettent donc
l’utilisation de machine de calcul massivement parallèle. Des algorithmes pratiques sont
ainsi également proposés.

Enfin l’utilisation de métamodèles est parfois nécessaire à cause d’un temps de calcul
toujours trop important. Le cas de la modélisation par processus aléatoire est abordé.
L’approche par processus ponctuel permet une estimation simplifiée de l’espérance et de
la variance conditionnelles de la variable aléaoire résultante et définit un nouveau critère
d’enrichissement SUR adapté aux événements rares.

Mots clefs: Événements rares ∗ Splitting ∗ Subset Simulation ∗ Nested sampling ∗ Calcul
parallèle ∗ Analyse de fiabilité ∗ Krigeage ∗ Stepwise Uncertainty Reduction

Abstract

This thesis address the issue of extreme event simulation. From a original understanding of
the Splitting methods, a new theoretical framework is proposed, regardless of any algorithm.
This framework is based on a point process associated with any real-valued random variable
and lets defined probability, quantile and moment estimators without any hypothesis on
this random variable. The artificial selection of threshold in Splitting vanishes and the
estimator of the probability of exceeding a threshold is indeed an estimator of the whole
cumulative distribution function until the given threshold. These estimators are based on
the simulation of iid. replicas of the point process. So they allow for the use of massively
parallel computer cluster. Suitable practical algorithms are thus proposed.

Finally it can happen that these advanced statistics still require too much samples. In
this context the computer code is considered as a random process with known distribution.
The point process framework lets handle this additional source of uncertainty and estimate
easily the conditional expectation and variance of the resulting random variable. It also
defines new SUR enrichment criteria designed for extreme event probability estimation.

Keywords: Rare events ∗ Splitting methods ∗ Subset Simulation ∗ Nested sampling
∗ Parallel algorithms ∗ Reliability analysis ∗ Kriging ∗ Stepwise Uncertainty Reduction

	Contents
	Context
	I Introduction
	Monte Carlo methods for rare events
	Crude Monte Carlo method
	Theoretical definition
	Limitation
	Practical implementation

	Importance Sampling
	Splitting
	Ideal splitting
	Adaptive splitting
	Conditional sampling

	Nested sampling
	Efficiency of the estimators

	Rare event simulation and surrogate models
	Usual surrogate models
	First/Second order reliability method
	Support-Vector Machine
	Polynomial-Chaos expansion
	Kriging

	Design of Experiments
	First Design of Experiments
	Model-oriented designs
	Stepwise Uncertainty Reduction

	Metamodels and estimators
	Crude Monte Carlo estimator
	Importance sampling-based procedures
	Subset Simulation

	II Contribution to rare event simulation
	Point process for rare event simulation
	Introduction
	The increasing random walk
	Probability estimator
	Minimal variance unbiased estimators
	Efficiency of the estimator
	Confidence intervals

	Quantile estimator
	Description of the estimator
	Statistical analysis of the estimator

	Discontinuous random variables
	The increasing random walk for discontinuous random variables
	Probability estimators

	Numerical examples
	Discretised random path
	Discrete random variable

	Conclusion

	Nested sampling and rare event simulation
	Introduction
	Ideal estimator
	Extreme event simulation
	Definition of the moment estimator
	Comparison with classical Monte Carlo

	Randomised unbiased estimator
	Definition
	Convergence rate
	Optimal randomisation
	Geometric randomisation
	Parallel implementation

	Application to heavy-tailed random variables
	Exact resolution for a Pareto distribution
	Comparison of the estimators

	Examples
	Practical implementation
	Variance increase
	Adaptive stopping criteria
	Nested sampling with fixed computational budget

	Conclusion

	Rare event simulation with random processes
	Rare event simulation
	Augmented problem
	Link with other metamodel based algorithms
	Uncertainty reduction
	Integrated SUR criteria

	Algorithms
	SUR criteria estimation
	Integrated SUR criteria estimation
	Bayesian Moving Particles

	Numerical results
	SUR criteria
	Statistical error
	Industrial problem

	Conclusion

	Conclusion and perspectives

	III Appendix
	Parallel computation of the estimators
	Introduction
	Parallel algorithms
	Sampling conditional distributions
	Batch simulation of random walks
	Fixed threshold
	Fixed number of terms
	Last Particle Algorithm

	Wall-clock time
	Fixed threshold algorithm
	Fixed number of terms algorithm

	Numerical benchmark of the parallelisation
	Presentation of the examples
	Estimation of failure probability
	Estimation of quantile

	Conclusion on parallel implementation

	Bibliography

	anm0:
	anm1:

