Thèse soutenue

Etude des flux sanguins dans le placenta humain et influence du shear stress sur la fonction biologique du syncytiotrophoblaste

FR
Auteur / Autrice : Edouard Lecarpentier
Direction : Vassilis Tsatsaris
Type : Thèse de doctorat
Discipline(s) : Physiologie
Date : Soutenance le 06/10/2016
Etablissement(s) : Sorbonne Paris Cité
Ecole(s) doctorale(s) : École doctorale Bio Sorbonne Paris Cité (Paris ; 2014-....)
Partenaire(s) de recherche : établissement de préparation : Université Paris Descartes (1970-2019)
Jury : Président / Présidente : Abdul I. Barakat
Examinateurs / Examinatrices : Vassilis Tsatsaris, Abdul I. Barakat, Marie Essig, Alexandre Hertig, Alain Tedgui, Danièle Evain-Brion
Rapporteurs / Rapporteuses : Marie Essig, Alexandre Hertig

Résumé

FR  |  
EN

La placentation humaine est de type hémomonochoriale, le sang maternel est directement en contact avec le syncytiotrophoblaste. Les flux sanguins maternels, dans la chambre intervilleuse, exercent des forces mécaniques de cisaillement (shear stress) sur la surface microvillositaire du syncytiotrophoblaste. Les effets physiologiques du shear stress exercé par les flux sanguins sur l’endothélium vasculaire artériel et veineux ont fait l’objet de nombreux travaux scientifiques. En revanche, les effets biologiques du shear stress sur le syncytiotrophoblaste humain n’ont jamais été explorés. L’objectif de ce travail était premièrement d’évaluer les valeurs du shear stress exercé in vivo sur le syncytiotrophoblaste humain au cours des grossesses normales, puis de mettre au point un modèle de culture primaire dynamique afin de reproduire les conditions physiologique et d’étudier in vitro la réponse biologique du syncytiotrophoblaste au shear stress. En dépit d’un débit sanguin maternel intraplacentaire important, estimé entre 400 et 600 mL.min-1, le shear stress moyen exercée par le syncytiotrophoblaste est estimée entre 0.5±0.2 et 2.3±1.1 dyn.cm-2. Nos résultats montrent cependant que l’intensité du shear stress est très hétérogène tant à l’échelle de la chambre intervilleuse que de la villosité terminale. Nous avons développé un modèle de culture cellulaire dynamique en condition de flux adapté au syncytiotrophoblaste humain. Ce modèle permet d’appliquer un shear stress égal et constant sur toutes les cellules cultivées et reproductible à chaque culture primaire. Aux gammes de shear stress étudiées (1 dyn.cm-2), nous n’avons pas mis en évidence de diminution de la viabilité cellulaire ni de déclenchement des processus précoces d’apoptose en conditions dynamiques comparativement aux conditions statiques. Deux types de chambre de perfusion permettent d’étudier des réponses cellulaires au shear stress à court et long terme selon des temps d’exposition allant de 5 minutes à 24 heures. Ce modèle expérimental a permis de montrer que le syncytiotrophoblaste humain en culture primaire est mécanosensible. La réponse cellulaire à des niveaux de shear stress de 1 dyn.cm-2 est multiple selon les temps d’exposition et le niveau d’intégration étudié. Après 45 minutes de shear stress les taux d’AMP cyclique intracellulaires sont augmentés ce qui a pour effet d’activer la voie de signalisation intracellulaire PKA-CREB. Cette augmentation d’AMP cyclique est secondaire à la synthèse et la libération de prostaglandine E2 qui, par une boucle de régulation autocrine stimule l’adenylate cyclase. L’augmentation de la synthèse/libération de PGE2 est dépendante de l’augmentation rapide du calcium intracellulaire sous shear stress. L’exposition au shear stress de 24 heures stimule l’expression et la sécrétion du PlGF, un facteur de croissance indispensable à l’angiogenèse placentaire et pour l’adaptation maternelle à la grossesse sur le plan vasculaire. Nos travaux montrent que l’augmentation de l’AMPc intracellulaire et l’activation de la PKA contribuent à la phosphorylation de CREB, facteur de transcription régulant l’expression du PlGF.