Thèse soutenue

Propriétés de transport des sels de lithium LiTDI et LiFSI : application à la formulation d'électrolytes optimisés pour batteries Li-ion

FR  |  
EN
Auteur / Autrice : Christopher Logan Berhaut
Direction : Meriem Anouti-BenaichoucheDaniel Lemordant
Type : Thèse de doctorat
Discipline(s) : Chimie-Physique, spécialité électrochimie
Date : Soutenance le 09/12/2016
Etablissement(s) : Tours
Ecole(s) doctorale(s) : École doctorale Énergie, Matériaux, Sciences de la Terre et de l'Univers (Centre-Val de Loire)
Partenaire(s) de recherche : Equipe de recherche : Physico-Chimie des Matériaux et des Électrolytes pour l’Énergie (Tours)
Jury : Président / Présidente : Michel Rosso
Examinateurs / Examinatrices : Patrick Judeinstein, Laure Timperman, Patrick Bernard
Rapporteurs / Rapporteuses : Patrick Judeinstein, Pascal Mailley

Résumé

FR  |  
EN

La plupart des batteries Li-ion aujourd’hui utilisent des électrolytes à base de LiPF6 un sel de lithium connu pour son instabilité chimique au-delà de 60°C car il se dégrade en libérant PF5 et LiF. En présence de traces d’eau il génère en plus des composés oxyfluorophosphorés et du HF qui peut être dommageable à la fois pour les performances et pour le vieillissement de l’accumulateur. Plusieurs sels sont candidats au remplacement de LiPF6, notamment ceux basés sur les anions fluorosulfonylamidures et les anions de Hückel. Ce travail concerne l’étude des propriétés physico-chimiques et de transport des électrolytes à base de 4,5-dicyano-2- (trifluoromethyl)imidazolide de lithium (LiTDI) et bis(fluorosulfonyl)amidure de lithium (LiFSI) pour une utilisation au sein d’accumulateurs de type Li-ion. Dans ce travail il a d’abord été montré que LiTDI n’est que faiblement dissocié dans les mélanges de carbonates d’alkyles utilisés dans les batteries Li-ion tels que le binaire (EC/DMC) ce qui limite sa conductivité. Pour pouvoir remédier à cet inconvénient, une étude des phénomènes de solvatation et d’associations ioniques a été menée et a conduit à proposer un mélange ternaire de solvants (EC/GBL/MP) dans lequel LiTDI est plus dissocié. Le mélange ternaire proposé améliore à la fois les propriétés de transport et les caractéristiques thermiques de l’électrolyte sans compromettre le domaine de stabilité chimique et électrochimique. Enfin, le nouvel électrolyte EC/GBL/MP contenant LiTDI, a été testé en accumulateurs dans les conditions opératoires usuelles (régime C/10 et température ambiante) et sévères (régime 10C et des températures allant de -20 °C à 60 °C). Le problème de corrosion de l’aluminium de LiFSI a aussi été pris en compte. Un électrolyte prometteur à base d’un mélange LiTDI/LiFSI montrant de meilleures performances que chaque sel utilisé séparément dans EC/DMC a été présenté. Les conclusions de cette thèse prouvent que LiTDI ou LiFSI peuvent être utilisés comme sels de lithium dans les électrolytes pour accumulateurs Li-ion.