Thèse soutenue

Dopage de nanostructures de carbone pour l'émission de champ

FR  |  
EN
Auteur / Autrice : Rongrong Wang
Direction : Raúl Arenal de la ConchaAurélien Masseboeuf
Type : Thèse de doctorat
Discipline(s) : Sciences et génie des matériaux
Date : Soutenance le 20/12/2016
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Sciences de la Matière (Toulouse)
Partenaire(s) de recherche : Laboratoire : Centre d'élaboration de matériaux et d'études structurales (Toulouse ; 1988-....)

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Ce travail de thèse a porté sur l'étude des nanostructures (fondamentalement des nanotubes (NTs)) à base de carbone pour leurs applications sur l'émission de champ, en particulière, sur leur potentielle utilisation dans les canons d'émission de champ froide (C-FEG, d'après son acronyme anglais). Nous nous sommes intéressés à l'incorporation des atomes dopants (l'azote et/ou le bore) dans la structure de ces nanomatériaux pour pouvoir moduler les propriétés électroniques (d'émission de champ). Pour doper ces nanostructures, nous avons développé la voie carbo-thermique. Elle est base sur la réduction thermique de l'acide borique en employant du carbone, en tant qu'agent réducteur, et en présence de l'azote. Nous avons donc exposé des NTs multi-parois de carbone, en présence d'un mélange de poudres de nitrure de bore et de l'acide borique, à des températures entre 1350-1500 °C, sous différentes atmosphères (hydrogène/argon et/ou de l'azote). Nous avons également proposé et exploré une nouvelle voie de dopage via la réaction d'un précurseur d'azote (le nitrure de fer) avec les nanotubes de carbone, sous azote et à des températures entre 1000-1200 °C. Nous avons combiné des études par microscopie électronique en transmission (imagerie d'haute résolution (HRTEM) et spectroscopie des pertes d'énergie (EELS, d'après son acronyme anglais) en mode balayage (STEM)) dans des microscopes corrigés d'aberrations avec des mesures de spectroscopie photo-électronique par rayons X (XPS). L'ensemble de ces analyses nous a permis d'étudier la structure de ces nano-objets ainsi que d'identifier et de connaître précisément leur composition élémentaire, même locale, au niveau sous-nanométrique (à l'échelle de ~2 angströms). Nous avons montré qu'il est possible de doper ces nanotubes de carbone en incorporant du nitrure de bore dans leur structure originale. Deux systèmes différents ont été observés : 1) la substitution des feuillets/parois internes de carbone des nanotubes par du nitrure de bore, en faisant des nanotubes hybrides carbone/nitrure de bore/carbone, à ne pas exclure de phases mixtes BxCyNz dans ces parois ; 2) la présence de nano-domaines de nitrure de bore, de quelques nanomètres (entre 2-10 nm) dans la structure des nanotubes de carbone. Nous avons aussi développé un banc d'émission de champ pour étudier ces propriétés des différentes nanostructures. Le banc équipé avec un canon d'un microscope électronique en transmission (MET) permet d'évaluer les performances émettrices de ces nanostructures dans des conditionnes réelles de fonctionnement (dans un vide de 10-7 Pa) et en permettant des flashes de dégazage. Nous avons également étudié l'influence des flashes dans un microscope électronique à balayage (MEB). D'après ces résultats, nous avons conclu que le point d'équilibre des flashes est de 4 A. Deux situations différentes ont été observées : 1) un flash insuffisant entraine des instabilités du courant d'émission dû à la présence d'impuretés ; 2) un flash excessif provoque la réduction des performances d'émission dû à l'arrondissement de la pointe émettrice.