Approche physico-statistique de la désagrégation des précipitations satellite dans les Tropiques
Auteur / Autrice : | Clément Guilloteau |
Direction : | Rémy Roca, Marielle Gosset |
Type : | Thèse de doctorat |
Discipline(s) : | Océan, atmosphère et surfaces continentales |
Date : | Soutenance le 07/11/2016 |
Etablissement(s) : | Toulouse 3 |
Ecole(s) doctorale(s) : | École doctorale Sciences de l’univers, de l’environnement et de l’espace (Toulouse) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (Toulouse ; 1995-....) |
Résumé
Les précipitations sont un phénomène dont la variabilité s'étend sur une très large gamme d'échelles : de l'échelle millimétrique de la goutte d'eau (échelle microphysique) à l'échelle des circulations atmosphériques globales (échelle synoptique). Il n'existe pas de système unique capable de fournir des observations des précipitations couvrant toutes ces échelles. Les observations satellite sont celles qui actuellement résolvent le plus efficacement les grandes échelles spatiales et temporelles : de la méso-échelle à l'échelle synoptique. Dans cette thèse, nous explorons en zone tropicale les capacités des satellites à résoudre les échelles spatiales de l'ordre de 100km, jusqu'aux échelles kilométriques ; et les échelles temporelles comprises entre 24 heures et 15 minutes (afin de résoudre le cycle diurne). L'approche retenue est physico-statistique. Si les grandes échelles peuvent être résolues par des approches déterministes combinant les mesures de multiples instruments spatiaux, plusieurs facteurs limitent la pertinence des approches déterministes à fine échelle : - Les limites instrumentales en terme de résolution spatiale. - Le nombre d'instruments en orbite qui limite la fréquence d'échantillonnage des mesures. - La nature dynamique de la variabilité fine échelle. En particulier, aux fines échelles, c'est la difficulté à parfaitement localiser les structures précipitantes qui entraine les erreurs d'estimation les plus importantes. L'approche physico-statistique est ici synonyme de déterministe (pour les grandes échelles) et probabiliste (pour les fines échelles). Le premier objectif de cette thèse est de déterminer précisément la limite des échelles qui peuvent être résolues de façon déterministe. L'approche physico-statistique de l'estimation des intensités de précipitation est implémentée dans cette thèse à partir d'une méthode multicapteur déterministe pré-existante : l'algorithme TAPEER, développé dans le cadre de la mission Megha-Tropiques, qui fournit une estimation du cumul pluviométrique journalier à une résolution de 1°. C'est la génération d'ensembles désagrégés par une méthode stochastique multi-échelle qui a été retenue ici. Les ensembles sont contraints par une information fine échelle : un masque de détection des aires précipitantes dérivé des images infrarouge metosat-SG à une résolution de 3km (et avec une image toutes les 15 minutes). La génération d'ensemble permet de caractériser l'incertitude sur l'estimation à travers la dispersion des réalisations de l'ensemble. Chaque réalisation de l'ensemble est générée de façon à reproduire le plus fidèlement possible les propriétés statistiques (distribution de fréquence des intensités, autocorrélation spatiale et temporelle) des véritables champs de précipitation. Ces champs et cette technique ont un apport pour les applications hydrologiques, par exemple pour améliorer le ruissellement lié aux précipitations intenses dans les modèles. Considérer plusieurs réalisations permet de plus d'étudier la propagation des incertitudes à travers un modèle.