Thèse soutenue

Optimisation sans dérivées sous incertitudes appliquées à des simulateurs coûteux

FR  |  
EN
Auteur / Autrice : Benoît Pauwels
Direction : Serge GrattonFrédéric Delbos
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 10/03/2016
Etablissement(s) : Toulouse 3
Ecole(s) doctorale(s) : École doctorale Mathématiques, informatique et télécommunications (Toulouse)
Partenaire(s) de recherche : Laboratoire : Centre Européen de Recherche et Formation Avancées en Calcul Scientifique (Toulouse)

Résumé

FR  |  
EN

La modélisation de phénomènes complexes rencontrés dans les problématiques industrielles peut conduire à l'étude de codes de simulation numérique. Ces simulateurs peuvent être très coûteux en temps d'exécution (de quelques heures à plusieurs jours), mettre en jeu des paramètres incertains et même être intrinsèquement stochastiques. Fait d'importance en optimisation basée sur de tels simulateurs, les dérivées des sorties en fonction des entrées peuvent être inexistantes, inaccessibles ou trop coûteuses à approximer correctement. Ce mémoire est organisé en quatre chapitres. Le premier chapitre traite de l'état de l'art en optimisation sans dérivées et en modélisation d'incertitudes. Les trois chapitres suivants présentent trois contributions indépendantes --- bien que liées --- au champ de l'optimisation sans dérivées en présence d'incertitudes. Le deuxième chapitre est consacré à l'émulation de codes de simulation stochastiques coûteux --- stochastiques au sens où l'exécution de simulations avec les mêmes paramètres en entrée peut donner lieu à des sorties distinctes. Tel était le sujet du projet CODESTOCH mené au Centre d'été de mathématiques et de recherche avancée en calcul scientifique (CEMRACS) au cours de l'été 2013 avec deux doctorants de Électricité de France (EDF) et du Commissariat à l'énergie atomique et aux énergies alternatives (CEA). Nous avons conçu quatre méthodes de construction d'émulateurs pour des fonctions dont les valeurs sont des densités de probabilité. Ces méthodes ont été testées sur deux exemples-jouets et appliquées à des codes de simulation industriels concernés par trois phénomènes complexes: la distribution spatiale de molécules dans un système d'hydrocarbures (IFPEN), le cycle de vie de grands transformateurs électriques (EDF) et les répercussions d'un hypothétique accident dans une centrale nucléaire (CEA). Dans les deux premiers cas l'émulation est une étape préalable à la résolution d'un problème d'optimisation. Le troisième chapitre traite de l'influence de l'inexactitude des évaluations de la fonction objectif sur la recherche directe directionnelle --- un algorithme classique d'optimisation sans dérivées. Dans les problèmes réels, l'imprécision est sans doute toujours présente. Pourtant les utilisateurs appliquent généralement les algorithmes de recherche directe sans prendre cette imprécision en compte. Nous posons trois questions. Quelle précision peut-on espérer obtenir, étant donnée l'inexactitude ? À quel prix cette précision peut-elle être atteinte ? Quels critères d'arrêt permettent de garantir cette précision ? Nous répondons à ces trois questions pour l'algorithme de recherche directe directionnelle appliqué à des fonctions dont l'imprécision sur les valeurs --- stochastique ou non --- est uniformément bornée. Nous déduisons de nos résultats un algorithme adaptatif pour utiliser efficacement des oracles de niveaux de précision distincts. Les résultats théoriques et l'algorithme sont validés avec des tests numériques et deux applications réelles: la minimisation de surface en conception mécanique et le placement de puits pétroliers en ingénierie de réservoir. Le quatrième chapitre est dédié aux problèmes d'optimisation affectés par des paramètres imprécis, dont l'imprécision est modélisée grâce à la théorie des ensembles flous. Plusieurs méthodes ont déjà été publiées pour résoudre les programmes linéaires où apparaissent des coefficients flous, mais très peu pour traiter les problèmes non linéaires. Nous proposons un algorithme pour répondre à une large classe de problèmes par tri non-dominé itératif.