Thèse soutenue

Géométrie de la longueur extrémale sur les espaces de Teichmüller

FR  |  
EN
Auteur / Autrice : Vincent Alberge
Direction : Athanase PapadopoulosKen'ichi Ōshika
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 23/03/2016
Etablissement(s) : Strasbourg
Ecole(s) doctorale(s) : École doctorale Mathématiques, sciences de l'information et de l'ingénieur (Strasbourg ; 1997-....)
Partenaire(s) de recherche : Laboratoire : Institut de recherche mathématique avancée (Strasbourg)
Jury : Président / Présidente : Olivier Guichard
Examinateurs / Examinatrices : N. A'Campo, Samuel Lelièvre, Gabriele Mondello
Rapporteurs / Rapporteuses : Hugo Parlier, Jean-Marc Schlenker

Résumé

FR  |  
EN

Dans ce travail nous nous intéressons à la géométrie de l’espace de Teichmüller via la longueur extrémale et à sa relation avec d’autres géométries. En effet, via le théorème d’uniformisation de Poincaré, l’espace de Teichmüller d’une surface orientable de type finie est un espace qui “classifie” aussi bien les structures hyperboliques de cette surface que les structures conformes. Suivant la classification utilisée, on obtient deux compactifications différentes de cet espace, qui sont respectivement la compactification de Thurston et la compactification de Gardiner-Masur. La première étant induite par la longueur hyperbolique et la deuxième par la longueur extrémale. Dans une première partie, on considère les compactifications dites “réduites” de Thurston et Gardiner-Masur. On montre qu’il existe une bijection naturelle entre les deux et que le groupe des auto-homéomorphismes du bord réduit de Thurston est canoniquement isomorphe au groupe modulaire étendu de la surface sous-jacente. Dans une deuxième partie, on étudie la convergence de certaines déformations de structures conformes aussi bien sur le bord de Thurston que sur celui de Gardiner-Masur. Ces déformations, appelées déformations horocycliques, sont un analogue des tremblements de terre de structures hyperboliques. Enfin, dans une troisième et dernière partie, on introduit une compactification à la Gardiner-Masur de l’espace de Teichmüller d’une surface à bord. On généralise des résultats obtenus dans le cas sans bord, et on établit quelques différences.