Géométrie de la longueur extrémale sur les espaces de Teichmüller

par Vincent Alberge

Thèse de doctorat en Mathématiques

Sous la direction de Athanase Papadopoulos et de Ken'ichi Ōshika.

Le président du jury était Olivier Guichard.

Le jury était composé de N. A'Campo, Sameul Lelièvre, Gabriele Mondello.

Les rapporteurs étaient Hugo Parlier, Jean-Marc Schlenker.


  • Résumé

    Dans ce travail nous nous intéressons à la géométrie de l’espace de Teichmüller via la longueur extrémale et à sa relation avec d’autres géométries. En effet, via le théorème d’uniformisation de Poincaré, l’espace de Teichmüller d’une surface orientable de type finie est un espace qui “classifie” aussi bien les structures hyperboliques de cette surface que les structures conformes. Suivant la classification utilisée, on obtient deux compactifications différentes de cet espace, qui sont respectivement la compactification de Thurston et la compactification de Gardiner-Masur. La première étant induite par la longueur hyperbolique et la deuxième par la longueur extrémale. Dans une première partie, on considère les compactifications dites “réduites” de Thurston et Gardiner-Masur. On montre qu’il existe une bijection naturelle entre les deux et que le groupe des auto-homéomorphismes du bord réduit de Thurston est canoniquement isomorphe au groupe modulaire étendu de la surface sous-jacente. Dans une deuxième partie, on étudie la convergence de certaines déformations de structures conformes aussi bien sur le bord de Thurston que sur celui de Gardiner-Masur. Ces déformations, appelées déformations horocycliques, sont un analogue des tremblements de terre de structures hyperboliques. Enfin, dans une troisième et dernière partie, on introduit une compactification à la Gardiner-Masur de l’espace de Teichmüller d’une surface à bord. On généralise des résultats obtenus dans le cas sans bord, et on établit quelques différences.

  • Titre traduit

    Extremal length geometry on Teichmüller spaces


  • Résumé

    In this thesis we are interested in the extremal length geometry of Teichmüller space and the links with other geometries. In particular, we work on two different compactifications of Teichmüller space, namely, the Thurston compactification and the Gardiner-Masur compactification. In the first part, we consider the so-called reduced compactifications of Thurston and Gardiner-Masur. We show that there exists a canonical bijection between them and that the group of self-homeomorphisms of the reduced Thurston boundary is canonicaly isomorphic (except for a few cases) to the extended mapping class group of the corresponding surface. In the second part, we study the asymptotic behaviour of some conformal structure deformations to the Thuston boundary and to the Gardiner-Masur boundary. These deformations are called horocyclic deformations and they are analogous to earthquakes of hyperbolic structures. Finally, in the last part, using extremal length we extend the notion of Gardiner-Masur compactification to surfaces with non-empty boundary, and we investigate differences with the case without boundary.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Strasbourg. Bibliothèque électronique du Services des bibliothèques 063.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.