Modeling economic resilience - PASTEL - Thèses en ligne de ParisTech Accéder directement au contenu
Thèse Année : 2016

Modeling economic resilience

Modéliser la résilience économique

Résumé

A wide range of climatic and ecological changes are unfolding around us. These changes notably manifest themselves through an increased environmental variability, such as shifts in the frequency, intensity, and spatial distribution of weather-related extreme events. If human societies cannot mitigate these transformations, to which conditions should they adapt? To many researchers and stakeholders, the answer is resilience. This concept seems to subsume a variety of solutions for dealing with a turbulent and uncertain world. Resilient systems bounce back after unexpected events, learn novel conditions and adapt to them. Theoretical models, however, to explore the links between socioeconomic mechanisms and resilience are still in their infancy. To advance such models, the present dissertation proposes a novel conceptual framework. This framework relies on an interdisciplinary and critical review of ecological and economic studies, and it is based on the theory of dynamical systems and on the paradigm of complex adaptive systems. We identify agent-based models as crucial for socioeconomic modeling. To assess their applicability to the study of resilience, we test at first whether such models can reproduce the bifurcation patterns of predator–prey interactions, which are a very important factor in both ecological and economic systems. The dissertation then tackles one of the main challenges for the design of resilient economic system: the large interconnectedness of production processes, whereby disruption may propagate and amplify. We next investigate the role of delays in production and supply on realistic economic networks, and show that the interplay between time delays and topology may greatly affect a network’s resilience. Finally, we investigate a model that encompasses adaptive responses of agents to shocks, and describes how disruptions propagate even though all firms do their best to mitigate risks. In particular, systemic amplification gets more pronounced when supply chains are fragmented. These theoretical findings are fairly general in character and may thus help the design of novel empirical studies. Through the application of several recent ideas and methods, this dissertation advances knowledge on innovative mathematical objects, such as Boolean delay equations on complex networks and evolutionary dynamics on graphs. Finally, the conceptual models herein open wide perspectives for further theoretical research on economic resilience, especially the study of environmental feedbacks and their impacts on the structural evolution of production networks.
De grandes transformations écologiques et climatiques sont aujourd'hui à l’œuvre. Elles sont sources d’instabilité environnementale, à l’image d’évènements climatiques extrêmes devenus plus fréquents, plus intenses, et touchant de nouvelles régions du globe. A défaut de pouvoir empêcher ces changements, comment les sociétés humaines pourraient-elles s'y adapter ? Pour beaucoup de chercheurs et de décideurs, c’est par la résilience qu’elles y parviendront. Ce concept semble renfermer des solutions nouvelles, adaptées à un monde turbulent et incertain. Par définition, les systèmes résilients sont capables de rebondir face à des chocs inattendus, d’apprendre rapidement et de s'adapter à des conditions inédites. Malgré l’intérêt suscité par cette notion, les processus qui permettent à une société d’être résiliente restent encore mal connus. Cette thèse développe un cadre conceptuel nouveau permettant, via la modélisation mathématique, d'explorer les liens théoriques entre mécanismes économiques et résilience. Ce cadre repose sur une analyse critique de la résilience en écologie — domaine d’origine du concept — et en économie — notre champ d’application. Nous l’appliquons aux systèmes de production économique, modélisés comme des réseaux de firmes et analysés à travers la théorie des systèmes dynamiques. Cette thèse évalue l’aptitude de tels modèles, dits multi-agents, à générer des profils de bifurcations, étape incontournable de l’analyse mathématique de la résilience. Nous étudions pour cela une dynamique proie–prédateur très générale en écologie et en économie. Ensuite, cette thèse s'attaque à un facteur majeur qui entrave la résilience : les fortes interdépendances entre activités économiques, par lesquelles les retards et interruptions de production se propagent d’une entreprise à l’autre. En utilisant des réseaux de production réalistes, nous montrons comment les délais d'approvisionnement, lorsque intégrés dans des topologies particulières, démultiplient ces phénomènes de propagation. Ensuite, grâce à un modèle évolutionnaire, nous mettons en lumière l’existence d’un risque systémique : les cascades d’incidents ont lieu alors même que tous les agents possèdent des inventaires adaptés au niveau de risque. Ce phénomène s’amplifie lorsque les chaînes d'approvisionnement se spécialisent et se fragmentent. Ces résultats théoriques ont une valeur générale, et pourront servir à orienter de futures recherches empiriques. Cette thèse fait en outre avancer les connaissances sur des méthodes et objets mathématiques très récents, comme les équations booléennes à retard formant un réseau complexe, et les dynamiques évolutionnaires sur les graphes. Les modèles et le cadre conceptuel proposés ouvrent de nouvelles perspectives de recherche sur la résilience, en particulier sur l’impact des rétroactions environnementales sur l'évolution structurelle des réseaux de production.
Fichier principal
Vignette du fichier
58245_COLON_2016_archivage.pdf (20.33 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-01495705 , version 1 (26-03-2017)

Identifiants

  • HAL Id : tel-01495705 , version 1

Citer

Célian Colon. Modeling economic resilience. Dynamical Systems [math.DS]. Université Paris Saclay (COmUE), 2016. English. ⟨NNT : 2016SACLX098⟩. ⟨tel-01495705⟩
952 Consultations
1005 Téléchargements

Partager

Gmail Facebook X LinkedIn More