Thèse soutenue

Nanobâtonnets de NaYF4 à upconversion : synthèse, dispersion colloïdale et propriétés électro-optiques
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Maud Thiriet
Direction : Thierry GacoinJacques Peretti
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 27/10/2016
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Interfaces : matériaux, systèmes, usages (Palaiseau, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Physique de la Matière Condensée (Palaiseau, Essonne) - Laboratoire de physique de la matière condensée
établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....)
Jury : Président / Présidente : Laurence Motte
Examinateurs / Examinatrices : Thierry Gacoin, Jacques Peretti, Yvan Dozov, Khalid Lahlil
Rapporteurs / Rapporteuses : Frédéric Chaput, Emmanuelle Lacaze

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les nanoparticules de fluorures dopées avec des ions lanthanides ont connu un développement croissant ces dernières années. Elles présentent en effet des propriétés optiques d’upconversion remarquables et très intéressantes pour de multiples applications allant du photovoltaïque à l’imagerie médicale. Dans cette thèse, on a élaboré des nanobâtonnets de NaYF4 dopés Yb/Er/Gd, aux propriétés d’émission optimisées. Leur alignement par un champ électrique a ensuite été étudié, nous permettant de tirer parti de leur anisotropie et des propriétés physiques en découlant : biréfringence et luminescence polarisée.Les nanocristaux sont synthétisés par voie solvothermale, à haute température (200 °C) et sous haute pression (20 bars). Leur morphologie et leur structure cristalline sont contrôlées par un choix approprié des paramètres de synthèse comme le dopage en gadolinium ou les conditions de chauffage. A l’issue de la synthèse, l’état d’agrégation des particules de NaYF4 produites limite leur dispersion dans les solvants organiques usuels. Une fonctionnalisation bien spécifique avec des ligands possédant des groupements carboxylate ou phosphonate se révèle alors indispensable. Le greffage des particules avec un ion citrate ou une molécule d’alendronate permet d’obtenir des suspensions colloïdales très stables dans le DMSO. Par ailleurs, la réactivité de l’amine porté par l'alendronate nous a permis de greffer une deuxième molécule active : une rhodamine B, un colorant test, ainsi qu’un cristal liquide cyanobiphényl à tête carboxylique. Grâce à cette fonctionnalisation, de nouveaux matériaux hybrides organo-minéraux ont été développés. La réponse électro-optique des suspensions colloïdales soumises à un champ électrique haute fréquence suit une loi de type effet Kerr, avec une relation quadratique entre la biréfringence induite et l’amplitude du champ appliqué. Les constantes de Kerr sont de l’ordre de 10 8 m/V2 en cohérence avec ce qui a été observé sur d’autres systèmes. La biréfringence observée est majoritairement induite par la structure cristalline anisotrope des particules. Le mécanisme de réorientation de nos particules sous champ est largement dominé par la polarisation de leur nuage électronique. Une luminescence polarisée est finalement décrite, ouvrant la voie à l’usage des nanobâtonnets de NaYF4 comme sondes d’orientation dans des systèmes biologiques ou au sein de fluides en écoulement.