Thèse soutenue

Persistance et vitesse d'extinction pour des modèles de populations stochastiques multitypes en temps discret.

FR  |  
EN
Auteur / Autrice : Etienne Adam
Direction : Jean-René Chazottes
Type : Thèse de doctorat
Discipline(s) : Mathématiques fondamentales
Date : Soutenance le 01/07/2016
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Centre de mathématiques appliquées de l'Ecole polytechnique (Palaiseau ; 1974-....) - Centre de Mathématiques Appliquées - Ecole Polytechnique / CMAP
établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....)
Jury : Président / Présidente : Arnaud Guillin
Examinateurs / Examinatrices : Jean-René Chazottes, Götz Kersting, Amaury Lambert, Éric Moulines, Vincent Bansaye
Rapporteurs / Rapporteuses : Fima C. Klebaner, Laurent Miclo

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Cette thèse porte sur l'étude mathématique de modèles stochastiques de dynamique de populations structurées.Dans le premier chapitre, nous introduisons un modèle stochastique à temps discret prenant en compte les diverses interactions possibles entre les individus, que ce soit de la compétition, de la migration, des mutations, ou bien de la prédation. Nous montrons d'abord un résultat de type ``loi des grands nombres'', où on montre que si la population initiale tend vers l'infini, alors sur un intervalle de temps fini, le processus stochastique converge en probabilité vers un processus déterministe sous-jacent. Nous quantifions aussi les écarts entre ces deux processus par un résultat de type ``théorème central limite''. Enfin, nous donnons un critère de persistance/extinction afin de déterminer le comportement en temps long de notre processus stochastique. Ce critère met en exergue un cas critique qui sera étudié plus en détail dans les chapitres suivants.Dans le deuxième chapitre, nous donnons un critère de croissance illimitée pour des processus vérifiant le cas critique évoqué plus haut. Nous illustrons en particulier ce critère avec l'exemple d'une métapopulation constituée de parcelles de type puits (c'est à dire dont la population s'éteint sans tenir compte de la migration), où l'on montre que la survie de la population est possible.Dans le troisième chapitre, nous nous intéressons au comportement du processus critique lorsqu'il croît vers l'infini. Nous montrons en particulier une convergence en loi vers une loi gamma de notre processus renormalisé et dans un cadre plus général, en renormalisant aussi en temps, nous obtenons une convergence en loi d'une fonction de notre processus vers la solution d'une équation différentielle stochastique appelée un processus de Bessel carré.Dans le quatrième et dernier chapitre, nous nous plac{c}ons dans le cas où le processus critique ne tend pas vers l'infini et étudions le temps d'atteinte de certains ensembles compacts. Nous donnons un encadrement asymptotique de la queue de ce temps d'atteinte. Lorsque le processus s'éteint, ces résultats nous permettent en particulier d'encadrer la queue du temps d'extinction. Dans le cas où notre processus est une chaîne de Markov, nous en déduisons un critère de récurrence nulle ou récurrence positive et dans ce cas, nous obtenons un taux de convergence sous-géométrique du noyau de transition de notre chaîne vers sa mesure de probabilité invariante.