Thèse soutenue

Matrices de silice mésoporeuses pour le développement de nanomatériaux multifonctionnels
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Robinson Moulin
Direction : Anne Bleuzen
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 02/11/2016
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences chimiques : molécules, matériaux, instrumentation et biosystèmes (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Laboratoire : Institut de chimie moléculaire et des matériaux d’Orsay (Orsay, Essonne ; 2006-....)
Jury : Président / Présidente : Kamel Boukheddaden
Examinateurs / Examinatrices : Anne Bleuzen, Kamel Boukheddaden, Lionel Salmon, Thibaud Coradin, Marie-Anne Arrio, Marianne Impéror-Clerc
Rapporteurs / Rapporteuses : Lionel Salmon, Thibaud Coradin

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Avec les progrès de l'informatique, la quantité de données crée et échangée augmente exponentiellement. Le stockage de l'information doit évoluer pour être plus performant, et les matériaux actuels atteignent leur limite. Une évolution technologique est nécessaire. Une des réponses possibles se trouve dans les polymères de coordinations photo-commutables, dont la propriété de bi-stabilité permettrait d'obtenir des densités de stockage et des vitesses de lecture/écriture jamais atteintes. Afin d'utiliser ces matériaux, leur mise en forme, et particulièrement leur réduction en taille, est nécessaire, mais accomplir cette mise en forme sans affecter la propriété de commutation est ardu. Dans ce travail, nous proposons une mise en forme contrôlée à base de silice mésoporeuse pour obtenir des nanoparticules de composés de coordination possédant des propriétés intéressantes pour des applications. Spécifiquement, Ce travail a pour objectifs de (i) réduire en taille les composés fonctionnels, (ii) étudier la propriété à l'échelle du nanomètre, (iii) utiliser les possibilités de notre voie de synthèse pour comprendre l'effet de la mise en forme et (iv) aller vers de nouvelles propriétés causées par la mise en forme. Nous espérons ainsi poser une base solide pour l'étude de ces composés fonctionnels à l'échelle du nanomètre.