Thèse soutenue

Dissipation de marée dans les étoiles de faible masse et les planètes géantes : ondes inertielles, structure interne et rotation différentielle

FR  |  
EN
Auteur / Autrice : Mathieu Guenel
Direction : Stéphane Mathis
Type : Thèse de doctorat
Discipline(s) : Astronomie et Astrophysique
Date : Soutenance le 21/10/2016
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Astronomie et astrophysique d'Île-de-France (Meudon, Hauts-de-Seine ; 1992-....)
Partenaire(s) de recherche : Laboratoire : Service d'Astrophysique (Gif-sur-Yvette (Essonne)) - Service d'Astrophysique (CEA-Saclay, DSM/Irfu/SAp) 91 Gif-sur-Yvette
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Alain Abergel
Examinateurs / Examinatrices : Stéphane Mathis, Alain Abergel, Jørgen Christensen-Dalsgaard, Michael Le Bars, Gordon Ogilvie, Caroline Terquem
Rapporteurs / Rapporteuses : Jørgen Christensen-Dalsgaard, Michael Le Bars

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Cette thèse étudie les mécanismes de dissipation de marée dans les étoiles de faible masse, possédant comme notre Soleil une enveloppe convective externe (i.e. de types M à F), ainsi que dans les planètes géantes gazeuses similaires à Jupiter et Saturne. En particulier, nous cherchons à comprendre et à caractériser l’influence de la structure et de la dynamique internes de ces corps sur les différents mécanismes physiques à l’origine de cette dissipation afin d’évaluer leur importance relative.Dans le cas des planètes géantes, nous utilisons des modèles semi-analytiques préexistants et nous montrons que la dissipation induite par la présence éventuelle d’un cœur solide viscoélastique n’est pas négligeable par rapport à celle induite par les ondes inertielles (dont la force de rappel est l’accélération de Coriolis) dans l’enveloppe convective. Pour les étoiles de faible masse, nous développons de nouvelles méthodes semi-analytiques ainsi que des simulations numériques d’ondes inertielles de marée se propageant dans l’enveloppe convective externe, dont nous calculons et caractérisons la dissipation d’énergie associée. Pour la première fois, nous prenons en compte les effets d’une rotation différentielle latitudinale telle qu’observée dans le Soleil et prédite par de nombreuses simulations numériques de convection dans les étoiles de faible masse. Nous mettons en évidence l’existence de nouvelles familles de modes inertiels ainsi que l’importance des résonances de corotation pour la dissipation de marée. Enfin, nous dérivons une nouvelle prescription pour la viscosité turbulente appliquée à ces ondes de marées en prenant en compte l’influence de la rotation sur les propriétés de la convection le long de l’évolution des étoiles.