Propriété de Liouville, entropie, et moyennabilité des groupes dénombrables
Auteur / Autrice : | Nicolás Matte Bon |
Direction : | Anna Erschler |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques fondamentales |
Date : | Soutenance le 31/03/2016 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de mathématiques d'Orsay (1998-....) - École normale supérieure (Paris ; 1985-....). Département de mathématiques et applications (1998-....) |
établissement opérateur d'inscription : Université Paris-Sud (1970-2019) | |
Jury : | Président / Présidente : Damien Gaboriau |
Examinateurs / Examinatrices : Anna Erschler, Damien Gaboriau, Thomas Delzant, Vadim A. Kaimanovich, Yves de Cornulier, Frédéric Paulin | |
Rapporteur / Rapporteuse : Thomas Delzant, Vadim A. Kaimanovich |
Mots clés
Résumé
Cette thèse étudie la moyennabilité et la propriété de Liouville des groupes pleins-topologiques des systèmes de Cantor, des groupes d'échanges d'intervalles, et des groupes agissants sur les arbres enracinés. Dans le Chapitre 2, nous obtenons les premiers exemples de groupes simples, infinis, de type fini, tels que le bord de Poisson de toute marche aléatoire simple est trivial (la propriété de Liouville). Ces exemples sont des sous-groupes dérivés de groupes pleins topologiques d'une famille de sous-décalages minimaux. Nous montrons que si la complexité d'un sous-décalage (pas nécessairement minimal) est strictement sous-quadratique, toute mesure de probabilité symétrique de support fini sur le groupe plein-topologique est d'entropie asymptotique nulle. Dans le Chapitre 3, nous exhibons une famille de groupes pleins-topologiques de sous-décalages minimaux qui contiennent les groupes de Grigorchuk G_ω comme sous-groupes. Cette construction montre que le groupe plein-topologique d'un sous-décalage minimal peut avoir des sous-groupes de croissance intermédiaire, en répondant à une question de Grigorchuk. Dans le Chapitre 4 (basé sur un travail en commun avec K. Juschenko, N. Monod, M. de la Salle) nous étudions les actions extensivement moyennables, une notion qui est un outil pour montrer la moyennabilité des groupes. Comme application, nous montrons la moyennabilité des groupes d'échanges d'intervalles dont les angles de translations ont rang rationnel au plus 2. Nous obtenons aussi une caractérisation ''de type Kesten'' de la moyennabilité extensive d'une action, et nous l'utilisons pour donner une preuve courte, purement probabiliste du fait que les actions récurrentes sont extensivement moyennables. Nous étudions aussi la propriété de Liouville pour les groupes d'échanges d'intervalles, et nous montrons qu'il existe des groupes d'échanges d'intervalles tels que toute mesure de support fini non dégénérée a un bord non trivial. Dans le Chapitre 5 (basé sur un travail en commun avec G. Amir, O. Angel, B. Virág) nous montrons que les groupes agissant sur les arbres enracinés par automorphismes bornés ont la propriété de Liouville. En particulier cela inclut les groupes engendrés par des automates d'activité bornée.