Etude théorique de la diffusion et de l'émission de lumière par un ensemble dense de dipôles résonants
Auteur / Autrice : | Nicolaas Jacobus Schilder |
Direction : | Jean-Jacques Greffet |
Type : | Thèse de doctorat |
Discipline(s) : | Physique |
Date : | Soutenance le 16/12/2016 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Ondes et matière (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : Institut d'optique Graduate school (Palaiseau, Essonne ; 1920-....) |
Laboratoire : Laboratoire Charle Fabry / Naphel | |
Jury : | Président / Présidente : Pierre Pillet |
Examinateurs / Examinatrices : Agnès Maître, Antoine Browaeys | |
Rapporteurs / Rapporteuses : Rémi Carminati, Robin Kaiser |
Mots clés
Résumé
Nous présentons une étude théorique des propriétés optiques d'un ensemble dense de dipôles résonants. Nous traitons deux cas particuliers: la diffusion de la lumière par des nuages d'atomes froids et l'électroluminescence par un film de boîtes quantiques colloïdales (BQCs) placées au voisinage d'une métasurface plasmonique. En faisant varier progressivement la densité atomique, nous avons montré que la diffusion de la lumière passe d'un comportement purement diffusif à un comportement mixte comportant à la fois de la diffraction par une particule effective homogène et de la diffusion. Il en ressort que les nuages d'atomes froids sont des systèmes intéressants pour étudier la diffusion de la lumière résonante. Nous avons montré que la lumière n'est plus due à la diffusion par des atomes individuels mais à l'effet de modes collectifs étendus dans tout l'objet. Ces modes microscopiques peuvent être identifiés à des modes des équations de Maxwell pour des objets ayant la même forme et un indice effectif. Nous avons étudié l'apparition du régime d'homogénéisation, c'est-à-dire de la suppression de la partie diffuse. De façon surprenante, un nuage atomique, dense au point d'avoir à résonance un indice comparable à celui d'un métal, continue à diffuser fortement la lumière. Finalement, nous avons étudié l'émission de lumière d'un film dense de BQCs. Nous introduisons un modèle de l'électroluminescence de BQCs placées près d'une métasurface plasmonique.