Thèse soutenue

Etudes théoriques d’effets optiques non-linéaires dans un gaz ultrafroid d’atomes de Rydberg

FR  |  
EN
Auteur / Autrice : Andrey Grankin
Direction : Philippe Grangier
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 21/06/2016
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Ondes et matière (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Institut d'optique Graduate school (Palaiseau, Essonne ; 1920-....)
Laboratoire : Laboratoire Charles Fabry / Optique quantique
Jury : Président / Présidente : Jean-Michel Raimond
Examinateurs / Examinatrices : Philippe Grangier, Pierre Pillet, Igor Lesanovsky, Etienne Brion
Rapporteurs / Rapporteuses : Klaus Moelmer, Michael Fleischhauer

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les photons apparaissent comme des vecteurs d'information fiables, car ils interagissent peu avec leur environnement. Malheureusement, ils interagissent si faiblement entre eux que la réalisation directe de portes logiques optiques à deux qubits est impossible. La propagation à travers des milieux atomiques non-linéaires permet néanmoins d'engendrer des interactions photon-photon effectives. L'utilisation du phénomène de transparence électromagnétiquement induite (EIT) permet d'induire une forte non-linearité résonante -- néanmoins pas encore détectable dans le domaine quantique, sur une transition d'un système à trois niveaux en “échelle”. Pour augmenter les effets non-linéaires et atteindre le régime quantique, il a récemment été proposé de combiner l'approche EIT au blocage d'excitation induit par les fortes interactions dipôle-dipôle entre atomes de Rydberg. En plaçant le milieu en cavité, on impose à la lumière des passages multiples et on accroît encore la non-linéarité optique. Ce type de dispositif a été étudié théoriquement et expérimentalement dans le régime dispersif et pour une non-linéarité faible, pour lequel un traitement classique du champ est adapté. Dans le présent mémoire, nous nous intéressons aux effets optiques non-linéaires induits par un milieu Rydberg dans le régime quantique.Dans le chapitre 1, nous présentons notre système d'étude, ses équations dynamiques et rappelons la définition et les principales propriétés de la fonction de corrélation d'intensité g^{2}que nous utilisons pour caractériser l'action de la non-linéarité sur le champ incident. Dans le chapitre 2, nous considérons le régime dispersif, i.e. lorsque l'état intermediaire est très désaccordé et peut être éliminé adiabatiquement. Nous utilisons l'approximation des bulles Rydberg selon laquelle le système peut être effectivement ramené à un ensemble de superatomes à deux niveaux couplés au mode de la cavité, décrit par le modèle de Tavis-Cummings forcé. Nous calculons analytiquement et numériquement la fonction g^{2}pour la lumière transmise, qui, selon les paramètres de la cavité, peut être “groupée” ou “dégroupée”. Dans le chapitre 3, nous présentons un traitement alternatif du système, qui nous permet d'étudier le régime résonant. Dans la limite d'un champ incident faible, nous dérivons analytiquement la fonction de corrélation g^{2} pour les lumières transmise et réfléchie, grâce à la factorisation des moyennes de produits d'opérateurs à l'ordre le plus bas de la théorie de perturbation. Nous proposons ensuite un modèle effectif non-linéaire à trois bosons pour le système couplé atomes-cavité. Enfin, nous étudions le régime résonant et observons de nouvelles caractéristiques de la fonction de corrélation g^{2}qui attestent la relation entre les conditions d'adaptation d'impédance de la cavité pour les différentes composantes du champ et les interactions dipôle-dipôle entre les atomes. Dans le chapitre 4, nous analysons le système dans le formalisme de Schwinger-Keldysh. En appliquant le théorème de Wick, nous développons perturbativement les fonctions de corrélation par rapport au Hamiltonien d'alimentation de la cavité et au Hamiltonien d'interaction dipôle-dipôle et effectuons une resommation complète par rapport à ce dernier. Nous retrouvons par cette méthode les résultats du Chapitre 3, sous une forme analytique. Nous allons aussi au-delà et derivons des expressions analytiques pour les composantes élastique et inélastique du spectre en transmission de la cavité. Nous identifions une structure de résonance polaritonique, jusque-là inconnue, que nous interprétons physiquement. Dans le chapitre 5, nous décrivons un protocole de porte photonique de phase de haute fidélité fondé sur le blocage Rydberg dans un ensemble atomique placé dans une cavité optique. Ce protocole peut être réalisé avec des cavités de finesse modérée et permet en principe un traitement efficace de l'information quantique codée dans des photons.