Thèse soutenue

Conception par optimisation des machines synchrones à double excitation dédiée à la traction ferroviaire

FR  |  
EN
Auteur / Autrice : Trung-Kien Hoang
Direction : Mohamed Khémis Gabsi
Type : Thèse de doctorat
Discipline(s) : Génie électrique
Date : Soutenance le 25/11/2016
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Electrical, optical, bio : physics and engineering (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École normale supérieure Paris-Saclay (Gif-sur-Yvette, Essonne ; 1912-....)
Laboratoire : Systèmes et applications des technologies de l'information et de l'énergie (Gif-sur-Yvette, Essonne ; 2002-....)
Jury : Président / Présidente : Mohamed Boussak
Examinateurs / Examinatrices : Mohamed Khémis Gabsi, Mohamed Boussak, Georges Barakat, Thierry Lubin, Lionel Vido, Frédéric Gillon, Minh Ta-Cao
Rapporteurs / Rapporteuses : Georges Barakat, Thierry Lubin

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les machines électriques classiques comme les machines asynchrones et les machines à aimant permanent sont largement utilisées dans ces applications de traction, et surtout en traction ferroviaire. Cette thèse évalue la contribution d'un autre type de machines, appelé machines synchrones à double excitation dans cette même application. Le terme double excitation signifie que le flux de la machine est créé par deux sources : le bobinage d'excitation et les aimants permanents. Le degré de liberté fourni par le bobinage d'excitation permet d’atteindre l’objectif d’amélioration de l’efficacité. Ce travail a pour but d’identifier les avantages des machines à double excitation sur un cycle de conduite spécifique. Il définira également les cas dans lesquels cette machine fournira de meilleures performances que celles des machines classiques.Les études récentes considèrent uniquement l’optimisation des systèmes en optimisant chaque composant du système séparément. Cependant, avoir les meilleurs performances dans chacun de ces composants ne signifie pas avoir un meilleur système. Afin d'atteindre des résultats plus réalistes, un modèle multi-physique prenant en compte la non linéarité des matériaux sera développé. Ce modèle intègre également les différents aspects comme l’électromagnétisme, la thermique, la mécanique et l’électronique de puissance.