Thèse soutenue

PGD-Abaques virtuels pour l'optimisation géométrique des structures
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Amaury Courard
Direction : Pierre Ladevèze
Type : Thèse de doctorat
Discipline(s) : Génie mécanique
Date : Soutenance le 18/01/2016
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences mécaniques et énergétiques, matériaux et géosciences (Gif-sur-Yvette, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École normale supérieure Paris-Saclay (Gif-sur-Yvette, Essonne ; 1912-....)
Laboratoire : Laboratoire de mécanique et technologie (Gif-sur-Yvette, Essonne ; 1975-2021)
Jury : Président / Présidente : Rodolphe Le Riche
Examinateurs / Examinatrices : Pierre Ladevèze, Rodolphe Le Riche, Anthony Gravouil, David Néron, Ludovic Ballere
Rapporteurs / Rapporteuses : Pierre Villon, Anthony Gravouil

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Lors de l'optimisation géométrique de structures, un grand nombre d'évaluations de champs est nécessaire. L'idée, développée dans cette thèse, est la construction efficace et rapide d'approximations de ces champs à travers la Proper Generalized Decomposition (PGD), une méthode de réduction de modèle. Les résultats, calculés une fois pour toutes, sont stockés dans des abaques virtuels pour une utilisation ultérieure dans un processus d'optimisation. Le problème considéré est paramétrique et les paramètres définissent la géométrie. Ce type de problème est particulièrement adapté à la PGD. En effet, de nombreux travaux ont traité de la résolution de problèmes paramétriques et des premières études ont porté, en particulier, sur la prise en compte de paramètres géométriques. Toutefois, ce qui caractérise nos travaux est d'aller vers des outils aptes à traiter des situations significatives de la complexité des problèmes rencontrés au niveau industriel. En particulier, l'exploitation de codes éléments finis commerciaux est une contrainte majeure. Il a été décidé de développer des méthodes permettant de traiter des problèmes à paramètres géométriques par la PGD, et, en partenariat avec AIRBUS Defence & Space, d'appliquer ces techniques à un démonstrateur industriel présentant une géométrie complexe (type splines) et de fortes non-linéarités (géométriques, matériaux). Notre démarche a été implémentée dans un process industriel utilisant des codes éléments finis commerciaux. On propose aussi une nouvelle extension de la PGD aux paramètres discrets autorisant la prise en considération, dans une même résolution, de configurations de structures complètement différentes (cas de chargement, matériaux, etc.).